Skip to main content

Python Data Loading from Google Sheets to Azure Cloud Storage using dlt

Need help deploying these pipelines, or figuring out how to run them in your data stack?

Join our Slack community or book a call with our support engineer Violetta.

This page provides technical documentation on using dlt, an open-source Python library, to load data from Google Sheets into Azure Cloud Storage. Google Sheets allows you to create and edit online spreadsheets, enabling real-time, secure sharing and insights from any device. On the other hand, Azure Cloud Storage facilitates data storage on Microsoft Azure, making it possible to easily create datalakes. Data can be uploaded in various formats such as JSONL, Parquet, or CSV. For more details on Google Sheets, visit Google Sheets About Page. By integrating these tools with dlt, you can streamline your data operations effectively.

dlt Key Features

  • Google Storage: The dlt library supports Google Storage. You can easily set up your Google cloud credentials and create a new bucket. Assign the Storage Object Admin role to your service account to get started. Google Storage Guide

  • Governance Support: dlt pipelines offer robust governance support through pipeline metadata utilization, schema enforcement and curation, and schema change alerts. These features contribute to better data management practices and overall data governance. Governance Support Guide

  • Azure Blob Storage: With dlt, you can interface with Azure Blob Storage. You can set up your Azure credentials in the .dlt/secrets.toml file. If you have the correct Azure credentials set up on your machine, dlt will fall back to the available default. Azure Blob Storage Guide

  • Local File System: dlt also supports local file systems. You can set up the bucket_url to point to a local folder. This is useful if you want to have those files in a local folder. Local File System Guide

  • Airtable: dlt provides a verified source for Airtable, a cloud-based platform that merges spreadsheet and database functionalities for easy data management and collaboration. You can retrieve tables from an Airtable base using the Airtable API. Airtable Verified Source Guide

Getting started with your pipeline locally

0. Prerequisites

dlt requires Python 3.8 or higher. Additionally, you need to have the pip package manager installed, and we recommend using a virtual environment to manage your dependencies. You can learn more about preparing your computer for dlt in our installation reference.

1. Install dlt

First you need to install the dlt library with the correct extras for Azure Cloud Storage:

pip install "dlt[filesystem]"

The dlt cli has a useful command to get you started with any combination of source and destination. For this example, we want to load data from Google Sheets to Azure Cloud Storage. You can run the following commands to create a starting point for loading data from Google Sheets to Azure Cloud Storage:

# create a new directory
mkdir google_sheets_pipeline
cd google_sheets_pipeline
# initialize a new pipeline with your source and destination
dlt init google_sheets filesystem
# install the required dependencies
pip install -r requirements.txt

The last command will install the required dependencies for your pipeline. The dependencies are listed in the requirements.txt:


google-api-python-client
dlt[filesystem]>=0.3.25

You now have the following folder structure in your project:

google_sheets_pipeline/
├── .dlt/
│ ├── config.toml # configs for your pipeline
│ └── secrets.toml # secrets for your pipeline
├── google_sheets/ # folder with source specific files
│ └── ...
├── google_sheets_pipeline.py # your main pipeline script
├── requirements.txt # dependencies for your pipeline
└── .gitignore # ignore files for git (not required)

2. Configuring your source and destination credentials

The dlt cli will have created a .dlt directory in your project folder. This directory contains a config.toml file and a secrets.toml file that you can use to configure your pipeline. The automatically created version of these files look like this:

generated config.toml

# put your configuration values here

[runtime]
log_level="WARNING" # the system log level of dlt
# use the dlthub_telemetry setting to enable/disable anonymous usage data reporting, see https://dlthub.com/docs/telemetry
dlthub_telemetry = true

[sources.google_sheets]
spreadsheet_url_or_id = "spreadsheet_url_or_id" # please set me up!
range_names =
["a", "b", "c"] # please set me up!

generated secrets.toml

# put your secret values and credentials here. do not share this file and do not push it to github

[sources.google_sheets.credentials]
client_id = "client_id" # please set me up!
client_secret = "client_secret" # please set me up!
refresh_token = "refresh_token" # please set me up!
project_id = "project_id" # please set me up!

[destination.filesystem]
dataset_name = "dataset_name" # please set me up!
bucket_url = "bucket_url" # please set me up!

[destination.filesystem.credentials]
aws_access_key_id = "aws_access_key_id" # please set me up!
aws_secret_access_key = "aws_secret_access_key" # please set me up!

2.1. Adjust the generated code to your usecase

Further help setting up your source and destinations
  • Read more about setting up the Google Sheets source in our docs.
  • Read more about setting up the Azure Cloud Storage destination in our docs.

The default filesystem destination is configured to connect to AWS S3. To load to Azure Cloud Storage, update the [destination.filesystem.credentials] section in your secrets.toml.

[destination.filesystem.credentials]
azure_storage_account_name="Please set me up!"
azure_storage_account_key="Please set me up!"

By default, the filesystem destination will store your files as JSONL. You can tell your pipeline to choose a different format with the loader_file_format property that you can set directly on the pipeline or via your config.toml. Available values are jsonl, parquet and csv:

[pipeline] # in ./dlt/config.toml
loader_file_format="parquet"

3. Running your pipeline for the first time

The dlt cli has also created a main pipeline script for you at google_sheets_pipeline.py, as well as a folder google_sheets that contains additional python files for your source. These files are your local copies which you can modify to fit your needs. In some cases you may find that you only need to do small changes to your pipelines or add some configurations, in other cases these files can serve as a working starting point for your code, but will need to be adjusted to do what you need them to do.

The main pipeline script will look something like this:


from typing import Sequence

import dlt

from google_sheets import google_spreadsheet


def load_pipeline_with_ranges(
spreadsheet_url_or_id: str, range_names: Sequence[str]
) -> None:
"""
Loads explicitly passed ranges
"""
pipeline = dlt.pipeline(
pipeline_name="google_sheets_pipeline",
destination='filesystem',
full_refresh=True,
dataset_name="test",
)
data = google_spreadsheet(
spreadsheet_url_or_id=spreadsheet_url_or_id,
range_names=range_names,
get_sheets=False,
get_named_ranges=False,
)
info = pipeline.run(data)
print(info)


def load_pipeline_with_sheets(spreadsheet_url_or_id: str) -> None:
"""
Will load all the sheets in the spreadsheet, but it will not load any of the named ranges in the spreadsheet.
"""
pipeline = dlt.pipeline(
pipeline_name="google_sheets_pipeline",
destination='filesystem',
full_refresh=True,
dataset_name="sample_google_sheet_data",
)
data = google_spreadsheet(
spreadsheet_url_or_id=spreadsheet_url_or_id,
get_sheets=True,
get_named_ranges=False,
)
info = pipeline.run(data)
print(info)


def load_pipeline_with_named_ranges(spreadsheet_url_or_id: str) -> None:
"""
Will not load the sheets in the spreadsheet, but it will load all the named ranges in the spreadsheet.
"""
pipeline = dlt.pipeline(
pipeline_name="google_sheets_pipeline",
destination='filesystem',
full_refresh=True,
dataset_name="sample_google_sheet_data",
)
data = google_spreadsheet(
spreadsheet_url_or_id=spreadsheet_url_or_id,
get_sheets=False,
get_named_ranges=True,
)
info = pipeline.run(data)
print(info)


def load_pipeline_with_sheets_and_ranges(spreadsheet_url_or_id: str) -> None:
"""
Will load all the sheets in the spreadsheet and all the named ranges in the spreadsheet.
"""
pipeline = dlt.pipeline(
pipeline_name="google_sheets_pipeline",
destination='filesystem',
full_refresh=True,
dataset_name="sample_google_sheet_data",
)
data = google_spreadsheet(
spreadsheet_url_or_id=spreadsheet_url_or_id,
get_sheets=True,
get_named_ranges=True,
)
info = pipeline.run(data)
print(info)


def load_with_table_rename_and_multiple_spreadsheets(
spreadsheet_url_or_id: str, range_names: Sequence[str]
) -> None:
"""Demonstrates how to load two spreadsheets in one pipeline and how to rename tables"""

pipeline = dlt.pipeline(
pipeline_name="google_sheets_pipeline",
destination='filesystem',
full_refresh=True,
dataset_name="sample_google_sheet_data",
)

# take data from spreadsheet 1
data = google_spreadsheet(
spreadsheet_url_or_id=spreadsheet_url_or_id,
range_names=[range_names[0]],
get_named_ranges=False,
)

# take data from spreadsheet 2
data_2 = google_spreadsheet(
spreadsheet_url_or_id=spreadsheet_url_or_id,
range_names=[range_names[1]],
get_named_ranges=False,
)
# apply the table name to the existing resource: the resource name is the name of the range
data.resources[range_names[0]].apply_hints(table_name="first_sheet_data")
data_2.resources[range_names[1]].apply_hints(table_name="second_sheet_data")

# load two spreadsheets
info = pipeline.run([data, data_2])
print(info)
# yes the tables are there
user_tables = pipeline.default_schema.data_tables()
# check if table is there
assert {t["name"] for t in user_tables} == {
"first_sheet_data",
"second_sheet_data",
"spreadsheet_info",
}


if __name__ == "__main__":
url_or_id = "1HhWHjqouQnnCIZAFa2rL6vT91YRN8aIhts22SUUR580"
range_names = ["hidden_columns_merged_cells", "Blank Columns"]

load_pipeline_with_ranges(url_or_id, range_names)
load_pipeline_with_sheets(url_or_id)
load_pipeline_with_named_ranges(url_or_id)
load_pipeline_with_sheets_and_ranges(url_or_id)
load_with_table_rename_and_multiple_spreadsheets(url_or_id, range_names)

Provided you have set up your credentials, you can run your pipeline like a regular python script with the following command:

python google_sheets_pipeline.py

4. Inspecting your load result

You can now inspect the state of your pipeline with the dlt cli:

dlt pipeline google_sheets_pipeline info

You can also use streamlit to inspect the contents of your Azure Cloud Storage destination for this:

# install streamlit
pip install streamlit
# run the streamlit app for your pipeline with the dlt cli:
dlt pipeline google_sheets_pipeline show

5. Next steps to get your pipeline running in production

One of the beauties of dlt is, that we are just a plain Python library, so you can run your pipeline in any environment that supports Python >= 3.8. We have a couple of helpers and guides in our docs to get you there:

The Deploy section will show you how to deploy your pipeline to

  • Deploy with GitHub Actions: Learn how to deploy your dlt pipeline using GitHub Actions by following this guide.
  • Deploy with Airflow and Google Composer: Follow the steps to deploy your pipeline with Airflow and Google Composer in this walkthrough.
  • Deploy with Google Cloud Functions: Check out the instructions for deploying your dlt pipeline with Google Cloud Functions here.
  • Other Deployment Options: Explore various other methods to deploy your dlt pipeline by visiting this page.

The running in production section will teach you about:

  • How to Monitor your pipeline: Learn how to effectively monitor your dlt pipeline in production to ensure smooth operations and quickly identify any issues. Read more here.
  • Set up alerts: Implement alerting mechanisms to get notified about critical events or failures in your dlt pipeline. Find out how to set up alerts here.
  • And set up tracing: Enable tracing to get detailed insights into the execution of your dlt pipeline, including timing information and data lineage. Learn more about setting up tracing here.

Additional pipeline guides

This demo works on codespaces. Codespaces is a development environment available for free to anyone with a Github account. You'll be asked to fork the demo repository and from there the README guides you with further steps.
The demo uses the Continue VSCode extension.

Off to codespaces!

DHelp

Ask a question

Welcome to "Codex Central", your next-gen help center, driven by OpenAI's GPT-4 model. It's more than just a forum or a FAQ hub – it's a dynamic knowledge base where coders can find AI-assisted solutions to their pressing problems. With GPT-4's powerful comprehension and predictive abilities, Codex Central provides instantaneous issue resolution, insightful debugging, and personalized guidance. Get your code running smoothly with the unparalleled support at Codex Central - coding help reimagined with AI prowess.