Skip to main content

Python Data Loading from aws s3 to aws athena using dlt Library

Connecting other file sources

This document describes how to set up loading from aws 3, but our filesystem source can not only stream from s3, but also from Google Cloud Storage, Google Drive, Azure, or local filesystem. Learn more about this here.

Need help deploying these pipelines, or figuring out how to run them in your data stack?

Join our Slack community or book a call with our support engineer Adrian.

This technical documentation provides guidance on using the open-source Python library, dlt, to stream CSV, Parquet, and JSONL files from AWS S3, Google Cloud Storage, Google Drive, Azure, or local filesystem using the reader source. Our focus is on loading this data into AWS Athena, an interactive query service that simplifies data analysis in Amazon S3 using standard SQL. dlt's implementation also supports iceberg tables, offering more flexibility and control over your data. Detailed information about the source can be found at this link.

dlt Key Features

  • Governance Support: dlt pipelines offer robust governance support through three key mechanisms: pipeline metadata utilization, schema enforcement and curation, and schema change alerts. Read more about this here.

  • AWS Athena / Glue Catalog: The athena destination stores data as parquet files in s3 buckets and creates external tables in aws athena. Read more about this here.

  • Data Lineage: dlt provides detailed data lineage and schema lineage for better understanding and tracking of data flow. Read more about this here.

  • Scalability and Fine-tuning: dlt offers several mechanism and configuration options to scale up and finetune pipelines. Read more about this here.

  • Filesystem & Buckets: Filesystem destination stores data in remote file systems and bucket storages like S3, Google Storage, or Azure Blob Storage. Read more about this here.

Getting started with your pipeline locally

0. Prerequisites

dlt requires Python 3.8 or higher. Additionally, you need to have the pip package manager installed, and we recommend using a virtual environment to manage your dependencies. You can learn more about preparing your computer for dlt in our installation reference.

1. Install dlt

First you need to install the dlt library with the correct extras for AWS Athena:

pip install "dlt[athena]"

The dlt cli has a useful command to get you started with any combination of source and destination. For this example, we want to load data from AWS S3 to AWS Athena. You can run the following commands to create a starting point for loading data from AWS S3 to AWS Athena:

# create a new directory
mkdir my_filesystem_pipeline
cd my_filesystem_pipeline
# initialize a new pipeline with your source and destination
dlt init filesystem athena
# install the required dependencies
pip install -r requirements.txt

The last command will install the required dependencies for your pipeline. The dependencies are listed in the requirements.txt:

dlt[athena]>=0.4.3a0
openpyxl>=3.0.0

You now have the following folder structure in your project:

my_filesystem_pipeline/
├── .dlt/
│ ├── config.toml # configs for your pipeline
│ └── secrets.toml # secrets for your pipeline
├── filesystem/ # folder with source specific files
│ └── ...
├── filesystem_pipeline.py # your main pipeline script
├── requirements.txt # dependencies for your pipeline
└── .gitignore # ignore files for git (not required)

2. Configuring your source and destination credentials

The dlt cli will have created a .dlt directory in your project folder. This directory contains a config.toml file and a secrets.toml file that you can use to configure your pipeline. The automatically created version of these files look like this:

generated config.toml

# put your configuration values here

[runtime]
log_level="WARNING" # the system log level of dlt
# use the dlthub_telemetry setting to enable/disable anonymous usage data reporting, see https://dlthub.com/docs/telemetry
dlthub_telemetry = true

[sources.filesystem]
bucket_url = "bucket_url" # please set me up!

generated secrets.toml

# put your secret values and credentials here. do not share this file and do not push it to github

[sources.filesystem.credentials]
aws_access_key_id = "aws_access_key_id" # please set me up!
aws_secret_access_key = "aws_secret_access_key" # please set me up!

[destination.athena]
query_result_bucket = "query_result_bucket" # please set me up!
athena_work_group = "athena_work_group" # please set me up!

[destination.athena.credentials]
aws_access_key_id = "aws_access_key_id" # please set me up!
aws_secret_access_key = "aws_secret_access_key" # please set me up!

2.1. Adjust the generated code to your usecase

Further help setting up your source and destinations
  • Read more about setting up the AWS S3 source in our docs.
  • Read more about setting up the AWS Athena destination in our docs.

3. Running your pipeline for the first time

The dlt cli has also created a main pipeline script for you at filesystem_pipeline.py, as well as a folder filesystem that contains additional python files for your source. These files are your local copies which you can modify to fit your needs. In some cases you may find that you only need to do small changes to your pipelines or add some configurations, in other cases these files can serve as a working starting point for your code, but will need to be adjusted to do what you need them to do.

The main pipeline script will look something like this:


import os
import posixpath
from typing import Iterator

import dlt
from dlt.sources import TDataItems

try:
from .filesystem import FileItemDict, filesystem, readers, read_csv # type: ignore
except ImportError:
from filesystem import (
FileItemDict,
filesystem,
readers,
read_csv,
)


TESTS_BUCKET_URL = posixpath.abspath("../tests/filesystem/samples/")


def stream_and_merge_csv() -> None:
"""Demonstrates how to scan folder with csv files, load them in chunk and merge on date column with the previous load"""
pipeline = dlt.pipeline(
pipeline_name="standard_filesystem_csv",
destination='athena',
dataset_name="met_data",
)
# met_data contains 3 columns, where "date" column contain a date on which we want to merge
# load all csvs in A801
met_files = readers(
bucket_url=TESTS_BUCKET_URL, file_glob="met_csv/A801/*.csv"
).read_csv()
# tell dlt to merge on date
met_files.apply_hints(write_disposition="merge", merge_key="date")
# NOTE: we load to met_csv table
load_info = pipeline.run(met_files.with_name("met_csv"))
print(load_info)
print(pipeline.last_trace.last_normalize_info)

# now let's simulate loading on next day. not only current data appears but also updated record for the previous day are present
# all the records for previous day will be replaced with new records
met_files = readers(
bucket_url=TESTS_BUCKET_URL, file_glob="met_csv/A801/*.csv"
).read_csv()
met_files.apply_hints(write_disposition="merge", merge_key="date")
load_info = pipeline.run(met_files.with_name("met_csv"))

# you can also do dlt pipeline standard_filesystem_csv show to confirm that all A801 were replaced with A803 records for overlapping day
print(load_info)
print(pipeline.last_trace.last_normalize_info)


def read_csv_with_duckdb() -> None:
pipeline = dlt.pipeline(
pipeline_name="standard_filesystem",
destination='athena',
dataset_name="met_data_duckdb",
)

# load all the CSV data, excluding headers
met_files = readers(
bucket_url=TESTS_BUCKET_URL, file_glob="met_csv/A801/*.csv"
).read_csv_duckdb(chunk_size=1000, header=True)

load_info = pipeline.run(met_files)

print(load_info)
print(pipeline.last_trace.last_normalize_info)


def read_csv_duckdb_compressed() -> None:
pipeline = dlt.pipeline(
pipeline_name="standard_filesystem",
destination='athena',
dataset_name="taxi_data",
full_refresh=True,
)

met_files = readers(
bucket_url=TESTS_BUCKET_URL,
file_glob="gzip/*",
).read_csv_duckdb()

load_info = pipeline.run(met_files)
print(load_info)
print(pipeline.last_trace.last_normalize_info)


def read_parquet_and_jsonl_chunked() -> None:
pipeline = dlt.pipeline(
pipeline_name="standard_filesystem",
destination='athena',
dataset_name="teams_data",
)
# When using the readers resource, you can specify a filter to select only the files you
# want to load including a glob pattern. If you use a recursive glob pattern, the filenames
# will include the path to the file inside the bucket_url.

# JSONL reading (in large chunks!)
jsonl_reader = readers(TESTS_BUCKET_URL, file_glob="**/*.jsonl").read_jsonl(
chunksize=10000
)
# PARQUET reading
parquet_reader = readers(TESTS_BUCKET_URL, file_glob="**/*.parquet").read_parquet()
# load both folders together to specified tables
load_info = pipeline.run(
[
jsonl_reader.with_name("jsonl_team_data"),
parquet_reader.with_name("parquet_team_data"),
]
)
print(load_info)
print(pipeline.last_trace.last_normalize_info)


def read_custom_file_type_excel() -> None:
"""Here we create an extract pipeline using filesystem resource and read_csv transformer"""

# instantiate filesystem directly to get list of files (FileItems) and then use read_excel transformer to get
# content of excel via pandas

@dlt.transformer(standalone=True)
def read_excel(
items: Iterator[FileItemDict], sheet_name: str
) -> Iterator[TDataItems]:
import pandas as pd

for file_obj in items:
with file_obj.open() as file:
yield pd.read_excel(file, sheet_name).to_dict(orient="records")

freshman_xls = filesystem(
bucket_url=TESTS_BUCKET_URL, file_glob="../custom/freshman_kgs.xlsx"
) | read_excel("freshman_table")

load_info = dlt.run(
freshman_xls.with_name("freshman"),
destination='athena',
dataset_name="freshman_data",
)
print(load_info)


def copy_files_resource(local_folder: str) -> None:
"""Demonstrates how to copy files locally by adding a step to filesystem resource and the to load the download listing to db"""
pipeline = dlt.pipeline(
pipeline_name="standard_filesystem_copy",
destination='athena',
dataset_name="standard_filesystem_data",
)

# a step that copies files into test storage
def _copy(item: FileItemDict) -> FileItemDict:
# instantiate fsspec and copy file
dest_file = os.path.join(local_folder, item["file_name"])
# create dest folder
os.makedirs(os.path.dirname(dest_file), exist_ok=True)
# download file
item.fsspec.download(item["file_url"], dest_file)
# return file item unchanged
return item

# use recursive glob pattern and add file copy step
downloader = filesystem(TESTS_BUCKET_URL, file_glob="**").add_map(_copy)

# NOTE: you do not need to load any data to execute extract, below we obtain
# a list of files in a bucket and also copy them locally
# listing = list(downloader)
# print(listing)

# download to table "listing"
# downloader = filesystem(TESTS_BUCKET_URL, file_glob="**").add_map(_copy)
load_info = pipeline.run(
downloader.with_name("listing"), write_disposition="replace"
)
# pretty print the information on data that was loaded
print(load_info)
print(pipeline.last_trace.last_normalize_info)


def read_files_incrementally_mtime() -> None:
pipeline = dlt.pipeline(
pipeline_name="standard_filesystem_incremental",
destination='athena',
dataset_name="file_tracker",
)

# here we modify filesystem resource so it will track only new csv files
# such resource may be then combined with transformer doing further processing
new_files = filesystem(bucket_url=TESTS_BUCKET_URL, file_glob="csv/*")
# add incremental on modification time
new_files.apply_hints(incremental=dlt.sources.incremental("modification_date"))
load_info = pipeline.run((new_files | read_csv()).with_name("csv_files"))
print(load_info)
print(pipeline.last_trace.last_normalize_info)

# load again - no new files!
new_files = filesystem(bucket_url=TESTS_BUCKET_URL, file_glob="csv/*")
# add incremental on modification time
new_files.apply_hints(incremental=dlt.sources.incremental("modification_date"))
load_info = pipeline.run((new_files | read_csv()).with_name("csv_files"))
print(load_info)
print(pipeline.last_trace.last_normalize_info)


if __name__ == "__main__":
copy_files_resource("_storage")
stream_and_merge_csv()
read_parquet_and_jsonl_chunked()
read_custom_file_type_excel()
read_files_incrementally_mtime()
read_csv_with_duckdb()
read_csv_duckdb_compressed()

Provided you have set up your credentials, you can run your pipeline like a regular python script with the following command:

python filesystem_pipeline.py

4. Inspecting your load result

You can now inspect the state of your pipeline with the dlt cli:

dlt pipeline filesystem_pipeline info

You can also use streamlit to inspect the contents of your AWS Athena destination for this:

# install streamlit
pip install streamlit
# run the streamlit app for your pipeline with the dlt cli:
dlt pipeline filesystem_pipeline show

5. Next steps to get your pipeline running in production

One of the beauties of dlt is, that we are just a plain Python library, so you can run your pipeline in any environment that supports Python >= 3.8. We have a couple of helpers and guides in our docs to get you there:

The Deploy section will show you how to deploy your pipeline to

  • Deploy with Github Actions: dlt allows you to deploy your pipelines using Github Actions. This method is easy to use and can be scheduled to run at specific times.
  • Deploy with Airflow: You can also deploy your pipelines using Airflow. This is a powerful tool for managing and scheduling pipelines.
  • Deploy with Google Cloud Functions: dlt provides support for deploying your pipelines with Google Cloud Functions. This allows you to run your pipelines in the cloud, without the need for any infrastructure.
  • Other Deployment Options: There are many other ways to deploy your dlt pipelines. You can explore all the options here.

The running in production section will teach you about:

  • Monitor your pipeline: With dlt, you can easily monitor your pipeline's performance and data quality. This allows you to identify and resolve any issues promptly. Learn more about how to monitor your pipeline here.
  • Set up alerts: dlt allows you to set up alerts to notify you of any critical issues or changes in your pipeline. This feature ensures that you can quickly respond to any problems that might affect your data pipeline. Find out more about setting up alerts here.
  • Enable tracing: Tracing allows you to track the execution of your pipeline and identify any bottlenecks or failures. With dlt, you can easily set up tracing to gain deeper insights into your pipeline's performance. Learn how to set up tracing here.

Additional pipeline guides

This demo works on codespaces. Codespaces is a development environment available for free to anyone with a Github account. You'll be asked to fork the demo repository and from there the README guides you with further steps.
The demo uses the Continue VSCode extension.

Off to codespaces!

DHelp

Ask a question

Welcome to "Codex Central", your next-gen help center, driven by OpenAI's GPT-4 model. It's more than just a forum or a FAQ hub – it's a dynamic knowledge base where coders can find AI-assisted solutions to their pressing problems. With GPT-4's powerful comprehension and predictive abilities, Codex Central provides instantaneous issue resolution, insightful debugging, and personalized guidance. Get your code running smoothly with the unparalleled support at Codex Central - coding help reimagined with AI prowess.