Python dlt
Library: Loading Data from Google Sheets
to Dremio
Join our Slack community or book a call with our support engineer Violetta.
Welcome to the technical documentation for using dlt
, an open-source Python library, to load data from Google Sheets
into Dremio
. Google Sheets
is a powerful tool for creating and editing online spreadsheets, offering real-time, secure sharing from any device. On the other hand, Dremio
is a leading data lakehouse solution, providing flexibility, scalability, and performance to bring users closer to their data. This guide will walk you through the process of using dlt
to bridge these two platforms, harnessing the collaborative power of Google Sheets
and the analytical capabilities of Dremio
. For more information on Google Sheets
, visit here.
dlt
Key Features
- Robust Governance Support:
dlt
pipelines offer robust governance support through pipeline metadata utilization, schema enforcement and curation, and schema change alerts. Read more - Scalability and Fine-tuning:
dlt
offers several mechanisms and configuration options to scale up and fine-tune pipelines, including parallel extraction and load, thread pools, and async execution. Read more - Automated Maintenance: With schema inference and evolution alerts, and short declarative code, maintenance becomes simple.
dlt
can be run wherever Python runs, including on Airflow, serverless functions, and notebooks. Read more - Efficient Data Extraction:
dlt
simplifies data extraction by utilizing iterators, chunking, and parallelization techniques. It also uses implicit extraction DAGs for efficient API calls for data enrichments or transformations. Read more - Customizable Pipelines:
dlt
allows you to create your own pipelines by leveraging source and resource methods from verified sources. You can configure the pipeline, load data from explicit range names, load all range names or sheets from a spreadsheet, and load data from multiple spreadsheets. Read more
Getting started with your pipeline locally
0. Prerequisites
dlt
requires Python 3.8 or higher. Additionally, you need to have the pip
package manager installed, and we recommend using a virtual environment to manage your dependencies. You can learn more about preparing your computer for dlt in our installation reference.
1. Install dlt
First you need to install the dlt
library with the correct extras for Dremio
:
pip install "dlt[dremio]"
The dlt
cli has a useful command to get you started with any combination of source and destination. For this example, we want to load data from Google Sheets
to Dremio
. You can run the following commands to create a starting point for loading data from Google Sheets
to Dremio
:
# create a new directory
mkdir google_sheets_pipeline
cd google_sheets_pipeline
# initialize a new pipeline with your source and destination
dlt init google_sheets dremio
# install the required dependencies
pip install -r requirements.txt
The last command will install the required dependencies for your pipeline. The dependencies are listed in the requirements.txt
:
google-api-python-client
dlt[dremio]>=0.3.25
You now have the following folder structure in your project:
google_sheets_pipeline/
├── .dlt/
│ ├── config.toml # configs for your pipeline
│ └── secrets.toml # secrets for your pipeline
├── google_sheets/ # folder with source specific files
│ └── ...
├── google_sheets_pipeline.py # your main pipeline script
├── requirements.txt # dependencies for your pipeline
└── .gitignore # ignore files for git (not required)
2. Configuring your source and destination credentials
The dlt
cli will have created a .dlt
directory in your project folder. This directory contains a config.toml
file and a secrets.toml
file that you can use to configure your pipeline. The automatically created version of these files look like this:
generated config.toml
# put your configuration values here
[runtime]
log_level="WARNING" # the system log level of dlt
# use the dlthub_telemetry setting to enable/disable anonymous usage data reporting, see https://dlthub.com/docs/telemetry
dlthub_telemetry = true
[sources.google_sheets]
spreadsheet_url_or_id = "spreadsheet_url_or_id" # please set me up!
range_names =
["a", "b", "c"] # please set me up!
generated secrets.toml
# put your secret values and credentials here. do not share this file and do not push it to github
[sources.google_sheets.credentials]
client_id = "client_id" # please set me up!
client_secret = "client_secret" # please set me up!
refresh_token = "refresh_token" # please set me up!
project_id = "project_id" # please set me up!
[destination.dremio]
dataset_name = "dataset_name" # please set me up!
staging_data_source = "staging_data_source" # please set me up!
[destination.dremio.credentials]
database = "database" # please set me up!
password = "password" # please set me up!
username = "username" # please set me up!
host = "host" # please set me up!
port = 32010
2.1. Adjust the generated code to your usecase
3. Running your pipeline for the first time
The dlt
cli has also created a main pipeline script for you at google_sheets_pipeline.py
, as well as a folder google_sheets
that contains additional python files for your source. These files are your local copies which you can modify to fit your needs. In some cases you may find that you only need to do small changes to your pipelines or add some configurations, in other cases these files can serve as a working starting point for your code, but will need to be adjusted to do what you need them to do.
The main pipeline script will look something like this:
from typing import Sequence
import dlt
from google_sheets import google_spreadsheet
def load_pipeline_with_ranges(
spreadsheet_url_or_id: str, range_names: Sequence[str]
) -> None:
"""
Loads explicitly passed ranges
"""
pipeline = dlt.pipeline(
pipeline_name="google_sheets_pipeline",
destination='dremio',
full_refresh=True,
dataset_name="test",
)
data = google_spreadsheet(
spreadsheet_url_or_id=spreadsheet_url_or_id,
range_names=range_names,
get_sheets=False,
get_named_ranges=False,
)
info = pipeline.run(data)
print(info)
def load_pipeline_with_sheets(spreadsheet_url_or_id: str) -> None:
"""
Will load all the sheets in the spreadsheet, but it will not load any of the named ranges in the spreadsheet.
"""
pipeline = dlt.pipeline(
pipeline_name="google_sheets_pipeline",
destination='dremio',
full_refresh=True,
dataset_name="sample_google_sheet_data",
)
data = google_spreadsheet(
spreadsheet_url_or_id=spreadsheet_url_or_id,
get_sheets=True,
get_named_ranges=False,
)
info = pipeline.run(data)
print(info)
def load_pipeline_with_named_ranges(spreadsheet_url_or_id: str) -> None:
"""
Will not load the sheets in the spreadsheet, but it will load all the named ranges in the spreadsheet.
"""
pipeline = dlt.pipeline(
pipeline_name="google_sheets_pipeline",
destination='dremio',
full_refresh=True,
dataset_name="sample_google_sheet_data",
)
data = google_spreadsheet(
spreadsheet_url_or_id=spreadsheet_url_or_id,
get_sheets=False,
get_named_ranges=True,
)
info = pipeline.run(data)
print(info)
def load_pipeline_with_sheets_and_ranges(spreadsheet_url_or_id: str) -> None:
"""
Will load all the sheets in the spreadsheet and all the named ranges in the spreadsheet.
"""
pipeline = dlt.pipeline(
pipeline_name="google_sheets_pipeline",
destination='dremio',
full_refresh=True,
dataset_name="sample_google_sheet_data",
)
data = google_spreadsheet(
spreadsheet_url_or_id=spreadsheet_url_or_id,
get_sheets=True,
get_named_ranges=True,
)
info = pipeline.run(data)
print(info)
def load_with_table_rename_and_multiple_spreadsheets(
spreadsheet_url_or_id: str, range_names: Sequence[str]
) -> None:
"""Demonstrates how to load two spreadsheets in one pipeline and how to rename tables"""
pipeline = dlt.pipeline(
pipeline_name="google_sheets_pipeline",
destination='dremio',
full_refresh=True,
dataset_name="sample_google_sheet_data",
)
# take data from spreadsheet 1
data = google_spreadsheet(
spreadsheet_url_or_id=spreadsheet_url_or_id,
range_names=[range_names[0]],
get_named_ranges=False,
)
# take data from spreadsheet 2
data_2 = google_spreadsheet(
spreadsheet_url_or_id=spreadsheet_url_or_id,
range_names=[range_names[1]],
get_named_ranges=False,
)
# apply the table name to the existing resource: the resource name is the name of the range
data.resources[range_names[0]].apply_hints(table_name="first_sheet_data")
data_2.resources[range_names[1]].apply_hints(table_name="second_sheet_data")
# load two spreadsheets
info = pipeline.run([data, data_2])
print(info)
# yes the tables are there
user_tables = pipeline.default_schema.data_tables()
# check if table is there
assert {t["name"] for t in user_tables} == {
"first_sheet_data",
"second_sheet_data",
"spreadsheet_info",
}
if __name__ == "__main__":
url_or_id = "1HhWHjqouQnnCIZAFa2rL6vT91YRN8aIhts22SUUR580"
range_names = ["hidden_columns_merged_cells", "Blank Columns"]
load_pipeline_with_ranges(url_or_id, range_names)
load_pipeline_with_sheets(url_or_id)
load_pipeline_with_named_ranges(url_or_id)
load_pipeline_with_sheets_and_ranges(url_or_id)
load_with_table_rename_and_multiple_spreadsheets(url_or_id, range_names)
Provided you have set up your credentials, you can run your pipeline like a regular python script with the following command:
python google_sheets_pipeline.py
4. Inspecting your load result
You can now inspect the state of your pipeline with the dlt
cli:
dlt pipeline google_sheets_pipeline info
You can also use streamlit to inspect the contents of your Dremio
destination for this:
# install streamlit
pip install streamlit
# run the streamlit app for your pipeline with the dlt cli:
dlt pipeline google_sheets_pipeline show
5. Next steps to get your pipeline running in production
One of the beauties of dlt
is, that we are just a plain Python library, so you can run your pipeline in any environment that supports Python >= 3.8. We have a couple of helpers and guides in our docs to get you there:
The Deploy section will show you how to deploy your pipeline to
- Deploy with Github Actions:
dlt
provides a simple command to deploy your pipeline with Github Actions. You can specify the schedule and additional flags for the deployment. For step by step instructions, refer to this guide. - Deploy with Airflow: Using Google's managed Airflow environment, Google Composer, you can easily deploy your
dlt
pipeline. This guide provides a detailed walkthrough. - Deploy with Google Cloud Functions: If you prefer serverless deployments, you can use Google Cloud Functions to deploy your
dlt
pipeline. Follow the instructions in this guide. - Other Deployment Options:
dlt
offers a variety of other deployment options to fit your needs. You can find more information on these options here.
The running in production section will teach you about:
- Monitor Your Pipeline: With
dlt
, you can easily monitor the performance and status of your data pipeline. Find out more about how to do this in the Monitoring Guide. - Set Up Alerts: Stay updated with the changes and issues in your pipeline by setting up alerts. Learn how to configure this in the Alerting Guide.
- Enable Tracing:
dlt
allows you to trace the execution of your pipeline, helping you to identify and troubleshoot issues. Learn more about how to set this up in the Tracing Guide.
Additional pipeline guides
- Load data from DigitalOcean to AlloyDB in python with dlt
- Load data from Chargebee to Microsoft SQL Server in python with dlt
- Load data from Google Cloud Storage to AWS S3 in python with dlt
- Load data from Google Analytics to AlloyDB in python with dlt
- Load data from PostgreSQL to AlloyDB in python with dlt
- Load data from IFTTT to MotherDuck in python with dlt
- Load data from PostgreSQL to BigQuery in python with dlt
- Load data from Jira to Databricks in python with dlt
- Load data from Bitbucket to Dremio in python with dlt
- Load data from Microsoft SQL Server to ClickHouse in python with dlt