Skip to main content

Python Data Loading from google sheets to aws s3 using dlt

Connecting other file destinations

This document describes how to set up loading to aws 3, but our filesystem source can not only load to s3, but also to Google Cloud Storage, Google Drive, Azure, or local filesystem. Learn more about this here.

Need help deploying these pipelines, or figuring out how to run them in your data stack?

Join our Slack community or book a call with our support engineer Adrian.

This documentation provides insights on how to use dlt, an open-source Python library, to load data from Google Sheets into AWS S3. Google Sheets is a powerful online spreadsheet application that allows real-time, secure sharing and editing from any device. On the other hand, AWS S3 is a remote file system and bucket storage solution that can be used as a staging area for other destinations or to quickly build a data lake. With dlt, you can seamlessly transfer data between these platforms. Detailed information about Google Sheets is available at this link.

dlt Key Features

  • Google Sheets API: The dlt library provides a verified source for Google Sheets, allowing users to easily load data from Google Sheets into their desired destination. More details can be found here.

  • Preparation of Data: The library provides detailed instructions on how to prepare your Google Sheet data for extraction, including sharing the sheet with the appropriate email, providing the spreadsheet ID/URL and explicit range names, and guidelines about headers. Check out the instructions here.

  • Google Storage and Azure Blob Storage: dlt supports various storage options including Google Storage and Azure Blob Storage, allowing users to store their data in a location that suits their needs. It also supports local file systems. Find more about these storage options here.

  • Automatic Configuration and Secrets Handling: The library allows for automatic configuration and secrets handling, providing a secure way to manage sensitive data. It recommends not hardcoding secrets and provides ways to pass secrets in code from external providers. Learn more about this feature here.

  • Google Sheets Minimal Example: dlt provides a minimal example showing how to load Google Sheets data using Python and the library. This example covers working with Google API, using built-in credentials, using union of credentials, and creating dynamically generated resources. See the example here.

Getting started with your pipeline locally

0. Prerequisites

dlt requires Python 3.8 or higher. Additionally, you need to have the pip package manager installed, and we recommend using a virtual environment to manage your dependencies. You can learn more about preparing your computer for dlt in our installation reference.

1. Install dlt

First you need to install the dlt library with the correct extras for AWS S3:

pip install "dlt[filesystem]"

The dlt cli has a useful command to get you started with any combination of source and destination. For this example, we want to load data from Google Sheets to AWS S3. You can run the following commands to create a starting point for loading data from Google Sheets to AWS S3:

# create a new directory
mkdir my-google_sheets-pipeline
cd my-google_sheets-pipeline
# initialize a new pipeline with your source and destination
dlt init google_sheets filesystem
# install the required dependencies
pip install -r requirements.txt

The last command will install the required dependencies for your pipeline. The dependencies are listed in the requirements.txt:

google-api-python-client
dlt[filesystem]>=0.3.25

You now have the following folder structure in your project:

my-google_sheets-pipeline/
├── .dlt/
│ ├── config.toml # configs for your pipeline
│ └── secrets.toml # secrets for your pipeline
├── google_sheets/ # folder with source specific files
│ └── ...
├── google_sheets_pipeline.py # your main pipeline script
├── requirements.txt # dependencies for your pipeline
└── .gitignore # ignore files for git (not required)

2. Configuring your source and destination credentials

The dlt cli will have created a .dlt directory in your project folder. This directory contains a config.toml file and a secrets.toml file that you can use to configure your pipeline:

config.toml

# put your configuration values here

[runtime]
log_level="WARNING" # the system log level of dlt
# use the dlthub_telemetry setting to enable/disable anonymous usage data reporting, see https://dlthub.com/docs/telemetry
dlthub_telemetry = true

[sources.google_sheets]
spreadsheet_url_or_id = "spreadsheet_url_or_id" # please set me up!
range_names =
["a", "b", "c"] # please set me up!

secrets.toml

# put your secret values and credentials here. do not share this file and do not push it to github

[sources.google_sheets.credentials]
client_id = "client_id" # please set me up!
client_secret = "client_secret" # please set me up!
refresh_token = "refresh_token" # please set me up!
project_id = "project_id" # please set me up!

[destination.filesystem]
bucket_url = "bucket_url" # please set me up!

[destination.filesystem.credentials]
aws_access_key_id = "aws_access_key_id" # please set me up!
aws_secret_access_key = "aws_secret_access_key" # please set me up!
Further help setting up your source and destinations

Please consult the detailed setup instructions for the AWS S3 destination in the dlt destinations documentation.

Likewise you can find the setup instructions for Google Sheets source in the dlt verifed sources documentation.

3. Running your pipeline for the first time

The dlt cli has also created a main pipeline script for you at google_sheets_pipeline.py, as well as a folder google_sheets that contains additional python files for your source. These files are your local copies which you can modify to fit your needs. In some cases you may find that you only need to do small changes to your pipelines or add some configurations, in other cases these files can serve as a working starting point for your code, but will need to be adjusted to do what you need them to do.

The main pipeline script will look something like this:

from typing import Sequence

import dlt

from google_sheets import google_spreadsheet


def load_pipeline_with_ranges(
spreadsheet_url_or_id: str, range_names: Sequence[str]
) -> None:
"""
Loads explicitly passed ranges
"""
pipeline = dlt.pipeline(
pipeline_name="google_sheets_pipeline",
destination='filesystem',
full_refresh=True,
dataset_name="test",
)
data = google_spreadsheet(
spreadsheet_url_or_id=spreadsheet_url_or_id,
range_names=range_names,
get_sheets=False,
get_named_ranges=False,
)
info = pipeline.run(data)
print(info)


def load_pipeline_with_sheets(spreadsheet_url_or_id: str) -> None:
"""
Will load all the sheets in the spreadsheet, but it will not load any of the named ranges in the spreadsheet.
"""
pipeline = dlt.pipeline(
pipeline_name="google_sheets_pipeline",
destination='filesystem',
full_refresh=True,
dataset_name="sample_google_sheet_data",
)
data = google_spreadsheet(
spreadsheet_url_or_id=spreadsheet_url_or_id,
get_sheets=True,
get_named_ranges=False,
)
info = pipeline.run(data)
print(info)


def load_pipeline_with_named_ranges(spreadsheet_url_or_id: str) -> None:
"""
Will not load the sheets in the spreadsheet, but it will load all the named ranges in the spreadsheet.
"""
pipeline = dlt.pipeline(
pipeline_name="google_sheets_pipeline",
destination='filesystem',
full_refresh=True,
dataset_name="sample_google_sheet_data",
)
data = google_spreadsheet(
spreadsheet_url_or_id=spreadsheet_url_or_id,
get_sheets=False,
get_named_ranges=True,
)
info = pipeline.run(data)
print(info)


def load_pipeline_with_sheets_and_ranges(spreadsheet_url_or_id: str) -> None:
"""
Will load all the sheets in the spreadsheet and all the named ranges in the spreadsheet.
"""
pipeline = dlt.pipeline(
pipeline_name="google_sheets_pipeline",
destination='filesystem',
full_refresh=True,
dataset_name="sample_google_sheet_data",
)
data = google_spreadsheet(
spreadsheet_url_or_id=spreadsheet_url_or_id,
get_sheets=True,
get_named_ranges=True,
)
info = pipeline.run(data)
print(info)


def load_with_table_rename_and_multiple_spreadsheets(
spreadsheet_url_or_id: str, range_names: Sequence[str]
) -> None:
"""Demonstrates how to load two spreadsheets in one pipeline and how to rename tables"""

pipeline = dlt.pipeline(
pipeline_name="google_sheets_pipeline",
destination='filesystem',
full_refresh=True,
dataset_name="sample_google_sheet_data",
)

# take data from spreadsheet 1
data = google_spreadsheet(
spreadsheet_url_or_id=spreadsheet_url_or_id,
range_names=[range_names[0]],
get_named_ranges=False,
)

# take data from spreadsheet 2
data_2 = google_spreadsheet(
spreadsheet_url_or_id=spreadsheet_url_or_id,
range_names=[range_names[1]],
get_named_ranges=False,
)
# apply the table name to the existing resource: the resource name is the name of the range
data.resources[range_names[0]].apply_hints(table_name="first_sheet_data")
data_2.resources[range_names[1]].apply_hints(table_name="second_sheet_data")

# load two spreadsheets
info = pipeline.run([data, data_2])
print(info)
# yes the tables are there
user_tables = pipeline.default_schema.data_tables()
# check if table is there
assert {t["name"] for t in user_tables} == {
"first_sheet_data",
"second_sheet_data",
"spreadsheet_info",
}


if __name__ == "__main__":
url_or_id = "1HhWHjqouQnnCIZAFa2rL6vT91YRN8aIhts22SUUR580"
range_names = ["hidden_columns_merged_cells", "Blank Columns"]

load_pipeline_with_ranges(url_or_id, range_names)
load_pipeline_with_sheets(url_or_id)
load_pipeline_with_named_ranges(url_or_id)
load_pipeline_with_sheets_and_ranges(url_or_id)
load_with_table_rename_and_multiple_spreadsheets(url_or_id, range_names)

Provided you have set up your credentials, you can run your pipeline like a regular python script with the following command:

python google_sheets_pipeline.py

4. Inspecting your load result

You can now inspect the state of your pipeline with the dlt cli:

dlt pipeline google_sheets_pipeline info

You can also use streamlit to inspect the contents of your AWS S3 destination for this:

# install streamlit
pip install streamlit
# run the streamlit app for your pipeline with the dlt cli:
dlt pipeline google_sheets_pipeline show

5. Next steps to get your pipeline running in production

One of the beauties of dlt is, that we are just a plain Python library, so you can run your pipeline in any environment that supports Python >= 3.8. We have a couple of helpers and guides in our docs to get you there:

The Deploy section will show you how to deploy your pipeline to

  • Github Actions: dlt provides support for deploying your pipelines using Github Actions. This allows you to automate your workflows and run your pipelines at specified intervals.
  • Airflow: With dlt, you can also deploy your pipelines using Airflow. This is particularly useful if you are working with complex workflows that require advanced scheduling and management.
  • Google Cloud Functions: If you are working in the Google Cloud environment, dlt allows you to deploy your pipelines using Google Cloud Functions. This allows you to run your pipelines in a serverless environment, reducing the need for infrastructure management.
  • And Others: Apart from the methods mentioned above, dlt supports various other deployment methods. You can find more information on how to deploy your dlt pipelines here.

The running in production section will teach you about:

  • Monitor Your Pipeline: dlt provides an easy way to monitor your pipeline. You can check the status of your pipeline, inspect the load info and trace, and even inspect, save, and alert on schema changes. Learn more about it here.
  • Set Up Alerts: With dlt, you can set up alerts to notify you of any changes or issues in your pipeline. This feature allows you to be proactive in managing your pipeline and ensuring it runs smoothly. Learn more about setting up alerts here.
  • Set Up Tracing: dlt allows you to set up tracing to track the runtime of your pipeline. This feature can be useful for debugging and optimizing your pipeline. Learn more about setting up tracing here.

Additional pipeline guides

This demo works on codespaces. Codespaces is a development environment available for free to anyone with a Github account. You'll be asked to fork the demo repository and from there the README guides you with further steps.
The demo uses the Continue VSCode extension.

Off to codespaces!

DHelp

Ask a question

Welcome to "Codex Central", your next-gen help center, driven by OpenAI's GPT-4 model. It's more than just a forum or a FAQ hub – it's a dynamic knowledge base where coders can find AI-assisted solutions to their pressing problems. With GPT-4's powerful comprehension and predictive abilities, Codex Central provides instantaneous issue resolution, insightful debugging, and personalized guidance. Get your code running smoothly with the unparalleled support at Codex Central - coding help reimagined with AI prowess.