Python Data Loading from google sheets
to aws s3
using dlt
This document describes how to set up loading to aws 3, but our filesystem source can not only load to s3, but also to Google Cloud Storage, Google Drive, Azure, or local filesystem. Learn more about this here.
Join our Slack community or book a call with our support engineer Adrian.
This documentation provides insights on how to use dlt
, an open-source Python library, to load data from Google Sheets
into AWS S3
. Google Sheets
is a powerful online spreadsheet application that allows real-time, secure sharing and editing from any device. On the other hand, AWS S3
is a remote file system and bucket storage solution that can be used as a staging area for other destinations or to quickly build a data lake. With dlt
, you can seamlessly transfer data between these platforms. Detailed information about Google Sheets
is available at this link.
dlt
Key Features
Google Sheets API: The
dlt
library provides a verified source for Google Sheets, allowing users to easily load data from Google Sheets into their desired destination. More details can be found here.Preparation of Data: The library provides detailed instructions on how to prepare your Google Sheet data for extraction, including sharing the sheet with the appropriate email, providing the spreadsheet ID/URL and explicit range names, and guidelines about headers. Check out the instructions here.
Google Storage and Azure Blob Storage:
dlt
supports various storage options including Google Storage and Azure Blob Storage, allowing users to store their data in a location that suits their needs. It also supports local file systems. Find more about these storage options here.Automatic Configuration and Secrets Handling: The library allows for automatic configuration and secrets handling, providing a secure way to manage sensitive data. It recommends not hardcoding secrets and provides ways to pass secrets in code from external providers. Learn more about this feature here.
Google Sheets Minimal Example:
dlt
provides a minimal example showing how to load Google Sheets data using Python and the library. This example covers working with Google API, using built-in credentials, using union of credentials, and creating dynamically generated resources. See the example here.
Getting started with your pipeline locally
0. Prerequisites
dlt
requires Python 3.8 or higher. Additionally, you need to have the pip
package manager installed, and we recommend using a virtual environment to manage your dependencies. You can
learn more about preparing your computer for dlt in our installation reference.
1. Install dlt
First you need to install the dlt
library with the correct extras for AWS S3
:
pip install "dlt[filesystem]"
The dlt
cli has a useful command to get you started with any combination of source and destination. For this example, we want to load data from Google Sheets
to AWS S3
. You can run the following commands to create a starting point for loading data from Google Sheets
to AWS S3
:
# create a new directory
mkdir my-google_sheets-pipeline
cd my-google_sheets-pipeline
# initialize a new pipeline with your source and destination
dlt init google_sheets filesystem
# install the required dependencies
pip install -r requirements.txt
The last command will install the required dependencies for your pipeline. The dependencies are listed in the requirements.txt
:
google-api-python-client
dlt[filesystem]>=0.3.25
You now have the following folder structure in your project:
my-google_sheets-pipeline/
├── .dlt/
│ ├── config.toml # configs for your pipeline
│ └── secrets.toml # secrets for your pipeline
├── google_sheets/ # folder with source specific files
│ └── ...
├── google_sheets_pipeline.py # your main pipeline script
├── requirements.txt # dependencies for your pipeline
└── .gitignore # ignore files for git (not required)
2. Configuring your source and destination credentials
The dlt
cli will have created a .dlt
directory in your project folder. This directory contains a config.toml
file and a secrets.toml
file that you can use to configure your pipeline:
config.toml
# put your configuration values here
[runtime]
log_level="WARNING" # the system log level of dlt
# use the dlthub_telemetry setting to enable/disable anonymous usage data reporting, see https://dlthub.com/docs/telemetry
dlthub_telemetry = true
[sources.google_sheets]
spreadsheet_url_or_id = "spreadsheet_url_or_id" # please set me up!
range_names =
["a", "b", "c"] # please set me up!
secrets.toml
# put your secret values and credentials here. do not share this file and do not push it to github
[sources.google_sheets.credentials]
client_id = "client_id" # please set me up!
client_secret = "client_secret" # please set me up!
refresh_token = "refresh_token" # please set me up!
project_id = "project_id" # please set me up!
[destination.filesystem]
bucket_url = "bucket_url" # please set me up!
[destination.filesystem.credentials]
aws_access_key_id = "aws_access_key_id" # please set me up!
aws_secret_access_key = "aws_secret_access_key" # please set me up!
Please consult the detailed setup instructions for the AWS S3
destination in the dlt
destinations documentation.
Likewise you can find the setup instructions for Google Sheets
source in the dlt
verifed sources documentation.
3. Running your pipeline for the first time
The dlt
cli has also created a main pipeline script for you at google_sheets_pipeline.py
, as well as a folder google_sheets
that contains additional python files for
your source. These files are your local copies which you can modify to fit your needs. In some cases you may find that you only need to do small changes to your
pipelines or add some configurations, in other cases these files can serve as a working starting point for your code, but will need to be adjusted to do what
you need them to do.
The main pipeline script will look something like this:
from typing import Sequence
import dlt
from google_sheets import google_spreadsheet
def load_pipeline_with_ranges(
spreadsheet_url_or_id: str, range_names: Sequence[str]
) -> None:
"""
Loads explicitly passed ranges
"""
pipeline = dlt.pipeline(
pipeline_name="google_sheets_pipeline",
destination='filesystem',
full_refresh=True,
dataset_name="test",
)
data = google_spreadsheet(
spreadsheet_url_or_id=spreadsheet_url_or_id,
range_names=range_names,
get_sheets=False,
get_named_ranges=False,
)
info = pipeline.run(data)
print(info)
def load_pipeline_with_sheets(spreadsheet_url_or_id: str) -> None:
"""
Will load all the sheets in the spreadsheet, but it will not load any of the named ranges in the spreadsheet.
"""
pipeline = dlt.pipeline(
pipeline_name="google_sheets_pipeline",
destination='filesystem',
full_refresh=True,
dataset_name="sample_google_sheet_data",
)
data = google_spreadsheet(
spreadsheet_url_or_id=spreadsheet_url_or_id,
get_sheets=True,
get_named_ranges=False,
)
info = pipeline.run(data)
print(info)
def load_pipeline_with_named_ranges(spreadsheet_url_or_id: str) -> None:
"""
Will not load the sheets in the spreadsheet, but it will load all the named ranges in the spreadsheet.
"""
pipeline = dlt.pipeline(
pipeline_name="google_sheets_pipeline",
destination='filesystem',
full_refresh=True,
dataset_name="sample_google_sheet_data",
)
data = google_spreadsheet(
spreadsheet_url_or_id=spreadsheet_url_or_id,
get_sheets=False,
get_named_ranges=True,
)
info = pipeline.run(data)
print(info)
def load_pipeline_with_sheets_and_ranges(spreadsheet_url_or_id: str) -> None:
"""
Will load all the sheets in the spreadsheet and all the named ranges in the spreadsheet.
"""
pipeline = dlt.pipeline(
pipeline_name="google_sheets_pipeline",
destination='filesystem',
full_refresh=True,
dataset_name="sample_google_sheet_data",
)
data = google_spreadsheet(
spreadsheet_url_or_id=spreadsheet_url_or_id,
get_sheets=True,
get_named_ranges=True,
)
info = pipeline.run(data)
print(info)
def load_with_table_rename_and_multiple_spreadsheets(
spreadsheet_url_or_id: str, range_names: Sequence[str]
) -> None:
"""Demonstrates how to load two spreadsheets in one pipeline and how to rename tables"""
pipeline = dlt.pipeline(
pipeline_name="google_sheets_pipeline",
destination='filesystem',
full_refresh=True,
dataset_name="sample_google_sheet_data",
)
# take data from spreadsheet 1
data = google_spreadsheet(
spreadsheet_url_or_id=spreadsheet_url_or_id,
range_names=[range_names[0]],
get_named_ranges=False,
)
# take data from spreadsheet 2
data_2 = google_spreadsheet(
spreadsheet_url_or_id=spreadsheet_url_or_id,
range_names=[range_names[1]],
get_named_ranges=False,
)
# apply the table name to the existing resource: the resource name is the name of the range
data.resources[range_names[0]].apply_hints(table_name="first_sheet_data")
data_2.resources[range_names[1]].apply_hints(table_name="second_sheet_data")
# load two spreadsheets
info = pipeline.run([data, data_2])
print(info)
# yes the tables are there
user_tables = pipeline.default_schema.data_tables()
# check if table is there
assert {t["name"] for t in user_tables} == {
"first_sheet_data",
"second_sheet_data",
"spreadsheet_info",
}
if __name__ == "__main__":
url_or_id = "1HhWHjqouQnnCIZAFa2rL6vT91YRN8aIhts22SUUR580"
range_names = ["hidden_columns_merged_cells", "Blank Columns"]
load_pipeline_with_ranges(url_or_id, range_names)
load_pipeline_with_sheets(url_or_id)
load_pipeline_with_named_ranges(url_or_id)
load_pipeline_with_sheets_and_ranges(url_or_id)
load_with_table_rename_and_multiple_spreadsheets(url_or_id, range_names)
Provided you have set up your credentials, you can run your pipeline like a regular python script with the following command:
python google_sheets_pipeline.py
4. Inspecting your load result
You can now inspect the state of your pipeline with the dlt
cli:
dlt pipeline google_sheets_pipeline info
You can also use streamlit to inspect the contents of your AWS S3
destination for this:
# install streamlit
pip install streamlit
# run the streamlit app for your pipeline with the dlt cli:
dlt pipeline google_sheets_pipeline show
5. Next steps to get your pipeline running in production
One of the beauties of dlt
is, that we are just a plain Python library, so you can run your pipeline in any environment that supports Python >= 3.8.
We have a couple of helpers and guides in our docs to get you there:
The Deploy section will show you how to deploy your pipeline to
- Github Actions:
dlt
provides support for deploying your pipelines using Github Actions. This allows you to automate your workflows and run your pipelines at specified intervals. - Airflow: With
dlt
, you can also deploy your pipelines using Airflow. This is particularly useful if you are working with complex workflows that require advanced scheduling and management. - Google Cloud Functions: If you are working in the Google Cloud environment,
dlt
allows you to deploy your pipelines using Google Cloud Functions. This allows you to run your pipelines in a serverless environment, reducing the need for infrastructure management. - And Others: Apart from the methods mentioned above,
dlt
supports various other deployment methods. You can find more information on how to deploy yourdlt
pipelines here.
The running in production section will teach you about:
- Monitor Your Pipeline:
dlt
provides an easy way to monitor your pipeline. You can check the status of your pipeline, inspect the load info and trace, and even inspect, save, and alert on schema changes. Learn more about it here. - Set Up Alerts: With
dlt
, you can set up alerts to notify you of any changes or issues in your pipeline. This feature allows you to be proactive in managing your pipeline and ensuring it runs smoothly. Learn more about setting up alerts here. - Set Up Tracing:
dlt
allows you to set up tracing to track the runtime of your pipeline. This feature can be useful for debugging and optimizing your pipeline. Learn more about setting up tracing here.
Additional pipeline guides
- Load data from AWS S3 to AWS S3 in python with dlt
- Load data from Shopify to Databricks in python with dlt
- Load data from HubSpot to Microsoft SQL Server in python with dlt
- Load data from AWS S3 to Snowflake in python with dlt
- Load data from Salesforce to BigQuery in python with dlt
- Load data from Pipedrive to ClickHouse in python with dlt
- Load data from Google Analytics to PostgreSQL in python with dlt
- Load data from Rest API to AWS S3 in python with dlt
- Load data from MongoDB to Redshift in python with dlt
- Load data from AWS S3 to Dremio in python with dlt