Skip to main content

Python Data Loading from hubspot to microsoft sql server with dlt

Need help deploying these pipelines, or figuring out how to run them in your data stack?

Join our Slack community or book a call with our support engineer Violetta.

This technical documentation provides a guide on how to use dlt, an open-source Python library, to load data from HubSpot to Microsoft SQL Server. HubSpot is a customer relationship management (CRM) software and inbound marketing platform that supports businesses in attracting visitors, engaging customers, and closing leads. On the other hand, Microsoft SQL Server is a relational database management system (RDBMS) that allows applications and tools to connect and communicate using Transact-SQL. The dlt library provides a seamless way to transfer data between these two platforms. For more details about HubSpot, visit https://www.hubspot.com.

dlt Key Features

  • Automated Maintenance: With dlt, schema inference and evolution are automated, and alerts are set up to ensure smooth maintenance. Short, declarative code makes it easy to manage your data pipelines. To learn more, visit here.

  • Flexible and Scalable: dlt can run wherever Python runs, be it on Airflow, serverless functions, or notebooks. It doesn't require any external APIs, backends, or containers, and can scale on both micro and large infrastructures. Read more about scaling and finetuning.

  • User-friendly Interface: The library offers a declarative interface that is friendly to beginners and empowers senior professionals. It removes knowledge obstacles for beginners while providing powerful tools for advanced users. Start with the Getting started guide.

  • Robust Governance Support: dlt pipelines provide robust governance support through pipeline metadata utilization, schema enforcement and curation, and schema change alerts. This contributes to better data management practices, compliance adherence, and overall data governance. Learn more about governance support.

  • Community Support: dlt has a growing community of users and contributors. You can ask questions, share how you use the library, and contribute to its development on Slack. Explore the community page for more information.

Getting started with your pipeline locally

0. Prerequisites

dlt requires Python 3.8 or higher. Additionally, you need to have the pip package manager installed, and we recommend using a virtual environment to manage your dependencies. You can learn more about preparing your computer for dlt in our installation reference.

1. Install dlt

First you need to install the dlt library with the correct extras for Microsoft SQL Server:

pip install "dlt[mssql]"

The dlt cli has a useful command to get you started with any combination of source and destination. For this example, we want to load data from HubSpot to Microsoft SQL Server. You can run the following commands to create a starting point for loading data from HubSpot to Microsoft SQL Server:

# create a new directory
mkdir hubspot_pipeline
cd hubspot_pipeline
# initialize a new pipeline with your source and destination
dlt init hubspot mssql
# install the required dependencies
pip install -r requirements.txt

The last command will install the required dependencies for your pipeline. The dependencies are listed in the requirements.txt:

dlt[mssql]>=0.3.25

You now have the following folder structure in your project:

hubspot_pipeline/
├── .dlt/
│ ├── config.toml # configs for your pipeline
│ └── secrets.toml # secrets for your pipeline
├── hubspot/ # folder with source specific files
│ └── ...
├── hubspot_pipeline.py # your main pipeline script
├── requirements.txt # dependencies for your pipeline
└── .gitignore # ignore files for git (not required)

2. Configuring your source and destination credentials

The dlt cli will have created a .dlt directory in your project folder. This directory contains a config.toml file and a secrets.toml file that you can use to configure your pipeline. The automatically created version of these files look like this:

generated config.toml

# put your configuration values here

[runtime]
log_level="WARNING" # the system log level of dlt
# use the dlthub_telemetry setting to enable/disable anonymous usage data reporting, see https://dlthub.com/docs/telemetry
dlthub_telemetry = true

generated secrets.toml

# put your secret values and credentials here. do not share this file and do not push it to github

[sources.hubspot]
api_key = "api_key" # please set me up!

[destination.mssql.credentials]
database = "database" # please set me up!
password = "password" # please set me up!
username = "username" # please set me up!
host = "host" # please set me up!
port = 1433
connect_timeout = 15
driver = "driver" # please set me up!

2.1. Adjust the generated code to your usecase

Further help setting up your source and destinations
  • Read more about setting up the HubSpot source in our docs.
  • Read more about setting up the Microsoft SQL Server destination in our docs.

3. Running your pipeline for the first time

The dlt cli has also created a main pipeline script for you at hubspot_pipeline.py, as well as a folder hubspot that contains additional python files for your source. These files are your local copies which you can modify to fit your needs. In some cases you may find that you only need to do small changes to your pipelines or add some configurations, in other cases these files can serve as a working starting point for your code, but will need to be adjusted to do what you need them to do.

The main pipeline script will look something like this:


from typing import List
import dlt

from hubspot import hubspot, hubspot_events_for_objects, THubspotObjectType


def load_crm_data() -> None:
"""
This function loads all resources from HubSpot CRM

Returns:
None
"""

# Create a DLT pipeline object with the pipeline name, dataset name, and destination database type
# Add full_refresh=(True or False) if you need your pipeline to create the dataset in your destination
p = dlt.pipeline(
pipeline_name="hubspot",
dataset_name="hubspot_dataset",
destination='mssql',
)

# Run the pipeline with the HubSpot source connector
info = p.run(hubspot())

# Print information about the pipeline run
print(info)


def load_crm_data_with_history() -> None:
"""
Loads all HubSpot CRM resources and property change history for each entity.
The history entries are loaded to a tables per resource `{resource_name}_property_history`, e.g. `contacts_property_history`

Returns:
None
"""

# Create a DLT pipeline object with the pipeline name, dataset name, and destination database type
# Add full_refresh=(True or False) if you need your pipeline to create the dataset in your destination
p = dlt.pipeline(
pipeline_name="hubspot",
dataset_name="hubspot_dataset",
destination='mssql',
)

# Configure the source with `include_history` to enable property history load, history is disabled by default
data = hubspot(include_history=True)

# Run the pipeline with the HubSpot source connector
info = p.run(data)

# Print information about the pipeline run
print(info)


def load_crm_objects_with_custom_properties() -> None:
"""
Loads CRM objects, reading only properties defined by the user.
"""

# Create a DLT pipeline object with the pipeline name,
# dataset name, properties to read and destination database
# type Add full_refresh=(True or False) if you need your
# pipeline to create the dataset in your destination
p = dlt.pipeline(
pipeline_name="hubspot",
dataset_name="hubspot_dataset",
destination='mssql',
)

source = hubspot()

# By default, all the custom properties of a CRM object are extracted,
# ignoring those driven by Hubspot (prefixed with `hs_`).

# To read fields in addition to the custom ones:
# source.contacts.bind(props=["date_of_birth", "degree"])

# To read only two particular fields:
source.contacts.bind(props=["date_of_birth", "degree"], include_custom_props=False)

# Run the pipeline with the HubSpot source connector
info = p.run(source)

# Print information about the pipeline run
print(info)


def load_web_analytics_events(
object_type: THubspotObjectType, object_ids: List[str]
) -> None:
"""
This function loads web analytics events for a list objects in `object_ids` of type `object_type`

Returns:
None
"""

# Create a DLT pipeline object with the pipeline name, dataset name, and destination database type
p = dlt.pipeline(
pipeline_name="hubspot",
dataset_name="hubspot_dataset",
destination='mssql',
full_refresh=False,
)

# you can get many resources by calling this function for various object types
resource = hubspot_events_for_objects(object_type, object_ids)
# and load them together passing resources in the list
info = p.run([resource])

# Print information about the pipeline run
print(info)


if __name__ == "__main__":
# Call the functions to load HubSpot data into the database with and without company events enabled
load_crm_data()
load_crm_data_with_history()
load_web_analytics_events("company", ["7086461639", "7086464459"])
load_crm_objects_with_custom_properties()

Provided you have set up your credentials, you can run your pipeline like a regular python script with the following command:

python hubspot_pipeline.py

4. Inspecting your load result

You can now inspect the state of your pipeline with the dlt cli:

dlt pipeline hubspot info

You can also use streamlit to inspect the contents of your Microsoft SQL Server destination for this:

# install streamlit
pip install streamlit
# run the streamlit app for your pipeline with the dlt cli:
dlt pipeline hubspot show

5. Next steps to get your pipeline running in production

One of the beauties of dlt is, that we are just a plain Python library, so you can run your pipeline in any environment that supports Python >= 3.8. We have a couple of helpers and guides in our docs to get you there:

The Deploy section will show you how to deploy your pipeline to

  • Deploy with Github Actions: dlt allows you to easily deploy your pipeline using Github Actions. This provides a powerful CI/CD runner that you can use for free.
  • Deploy with Airflow: You can also deploy your dlt pipeline with Airflow, a platform used to programmatically author, schedule and monitor workflows.
  • Deploy with Google Cloud Functions: dlt supports deploying pipelines with Google Cloud Functions, allowing you to run your code without thinking about the underlying infrastructure.
  • Other Deployment Options: There are various other ways to deploy your dlt pipeline. Check out the full list of deployment options here.

The running in production section will teach you about:

  • Monitor Your Pipeline: With dlt, you can keep an eye on your pipeline's performance and detect any issues early. This helps ensure that your data pipeline runs smoothly and efficiently. Learn more about it here.
  • Set Up Alerts: Stay informed about your pipeline's status with dlt's alerting feature. This allows you to receive notifications about any issues or updates related to your pipeline. Find out how to set up alerts here.
  • Enable Tracing: dlt allows you to trace your pipeline's execution, providing valuable insights into its operation and performance. This can help you identify and resolve any potential issues. Learn how to set up tracing here.

Available Sources and Resources

For this verified source the following sources and resources are available

Source hubspot

Hubspot source provides data on companies, contacts, deals, and customer service tickets.

Resource NameWrite DispositionDescription
companiesreplaceInformation about organizations
contactsreplaceVisitors, potential customers, leads
dealsreplaceDeal records, deal tracking
productsreplacePricing information of a product
quotesreplacePrice proposals that salespeople can create and send to their contacts
ticketsreplaceRequest for help from customers or users

Additional pipeline guides

This demo works on codespaces. Codespaces is a development environment available for free to anyone with a Github account. You'll be asked to fork the demo repository and from there the README guides you with further steps.
The demo uses the Continue VSCode extension.

Off to codespaces!

DHelp

Ask a question

Welcome to "Codex Central", your next-gen help center, driven by OpenAI's GPT-4 model. It's more than just a forum or a FAQ hub – it's a dynamic knowledge base where coders can find AI-assisted solutions to their pressing problems. With GPT-4's powerful comprehension and predictive abilities, Codex Central provides instantaneous issue resolution, insightful debugging, and personalized guidance. Get your code running smoothly with the unparalleled support at Codex Central - coding help reimagined with AI prowess.