Skip to main content

Loading Data from PostgreSQL to BigQuery with dlt in Python

Need help deploying these pipelines, or figuring out how to run them in your data stack?

Join our Slack community or book a call with our support engineer Violetta.

PostgreSQL is a powerful, open-source object-relational database system with over 35 years of active development, known for its reliability, feature robustness, and performance. BigQuery is a serverless and cost-effective enterprise data warehouse that works across clouds and scales with your data. This documentation covers the process of loading data from PostgreSQL to BigQuery using the open-source Python library dlt. The library simplifies data transfer between these two platforms, ensuring efficient and reliable data migration. For more information about PostgreSQL, visit here.

dlt Key Features

  • Governance Support: dlt pipelines offer robust governance support through pipeline metadata, schema enforcement, and schema change alerts. Learn more here.
  • Transformations with dbt: Integrate dbt into your dlt pipelines to structure transformations into DAGs, providing cross-database compatibility and various features. Learn more here.
  • SQL Client for Transformations: Use the dlt SQL client to execute SQL statements for data transformations, including schema changes and data manipulation. Learn more here.
  • Integration with Pandas: Fetch query results as Pandas data frames and perform transformations using Pandas functionalities. Learn more here.
  • Support for Multiple SQL Databases: dlt supports all SQLAlchemy dialects, allowing you to load data to a variety of SQL databases including PostgreSQL, MySQL, SQLite, and more. Learn more here.

Getting started with your pipeline locally

0. Prerequisites

dlt requires Python 3.8 or higher. Additionally, you need to have the pip package manager installed, and we recommend using a virtual environment to manage your dependencies. You can learn more about preparing your computer for dlt in our installation reference.

1. Install dlt

First you need to install the dlt library with the correct extras for BigQuery:

pip install "dlt[bigquery]"

The dlt cli has a useful command to get you started with any combination of source and destination. For this example, we want to load data from PostgreSQL to BigQuery. You can run the following commands to create a starting point for loading data from PostgreSQL to BigQuery:

# create a new directory
mkdir sql_database_postgres_pipeline
cd sql_database_postgres_pipeline
# initialize a new pipeline with your source and destination
dlt init sql_database bigquery
# install the required dependencies
pip install -r requirements.txt

The last command will install the required dependencies for your pipeline. The dependencies are listed in the requirements.txt:


sqlalchemy>=1.4
dlt[bigquery]>=0.4.7

You now have the following folder structure in your project:

sql_database_postgres_pipeline/
├── .dlt/
│ ├── config.toml # configs for your pipeline
│ └── secrets.toml # secrets for your pipeline
├── sql_database/ # folder with source specific files
│ └── ...
├── sql_database_pipeline.py # your main pipeline script
├── requirements.txt # dependencies for your pipeline
└── .gitignore # ignore files for git (not required)

2. Configuring your source and destination credentials

The dlt cli will have created a .dlt directory in your project folder. This directory contains a config.toml file and a secrets.toml file that you can use to configure your pipeline. The automatically created version of these files look like this:

generated config.toml

# put your configuration values here

[runtime]
log_level="WARNING" # the system log level of dlt
# use the dlthub_telemetry setting to enable/disable anonymous usage data reporting, see https://dlthub.com/docs/telemetry
dlthub_telemetry = true

generated secrets.toml

# put your secret values and credentials here. do not share this file and do not push it to github

[sources.sql_database.credentials]
drivername = "drivername" # please set me up!
database = "database" # please set me up!
password = "password" # please set me up!
username = "username" # please set me up!
host = "host" # please set me up!
port = 0 # please set me up!

[destination.bigquery]
dataset_name = "dataset_name" # please set me up!
location = "US"

[destination.bigquery.credentials]
project_id = "project_id" # please set me up!
private_key = "private_key" # please set me up!
client_email = "client_email" # please set me up!

2.1. Adjust the generated code to your usecase

Further help setting up your source and destinations
  • Read more about setting up the PostgreSQL source in our docs.
  • Read more about setting up the BigQuery destination in our docs.

The default sql_database pipeline is configured to connect to an example postgres database. The sql_database source supports all sql dialects supported by SQLAlchemy. Please refer to the PostgreSQL of the SQLAlchemy docs for additional info about SQLAlchemy and PostgresSQL.

To connect to PostgresSQL with this example pipeline, you'll need to install an PostgresSQL Python DB API driver:

pip install psycopg2

And use an PostgresSQL connection String in your code:

credentials = ConnectionStringCredentials(
"postgresql+psycopg2://username:password@host:5432/database"
)

Or your secrets.toml:

[sources.sql_database.credentials]
drivername = "postgresql+psycopg2"
database = "database"
password = "password"
username = "username"
host = "host"
port = 5432

3. Running your pipeline for the first time

The dlt cli has also created a main pipeline script for you at sql_database_pipeline.py, as well as a folder sql_database that contains additional python files for your source. These files are your local copies which you can modify to fit your needs. In some cases you may find that you only need to do small changes to your pipelines or add some configurations, in other cases these files can serve as a working starting point for your code, but will need to be adjusted to do what you need them to do.

The main pipeline script will look something like this:


import sqlalchemy as sa
import humanize

import dlt
from dlt.common import pendulum
from dlt.sources.credentials import ConnectionStringCredentials

from sql_database import sql_database, sql_table, Table


def load_select_tables_from_database() -> None:
"""Use the sql_database source to reflect an entire database schema and load select tables from it.

This example sources data from the public Rfam MySQL database.
"""
# Create a pipeline
pipeline = dlt.pipeline(
pipeline_name="rfam", destination='bigquery', dataset_name="rfam_data"
)

# Credentials for the sample database.
# Note: It is recommended to configure credentials in `.dlt/secrets.toml` under `sources.sql_database.credentials`
credentials = ConnectionStringCredentials(
"mysql+pymysql://rfamro@mysql-rfam-public.ebi.ac.uk:4497/Rfam"
)
# To pass the credentials from `secrets.toml`, comment out the above credentials.
# And the credentials will be automatically read from `secrets.toml`.

# Configure the source to load a few select tables incrementally
source_1 = sql_database(credentials).with_resources("family", "clan")
# Add incremental config to the resources. "updated" is a timestamp column in these tables that gets used as a cursor
source_1.family.apply_hints(incremental=dlt.sources.incremental("updated"))
source_1.clan.apply_hints(incremental=dlt.sources.incremental("updated"))

# Run the pipeline. The merge write disposition merges existing rows in the destination by primary key
info = pipeline.run(source_1, write_disposition="merge")
print(info)

# Load some other tables with replace write disposition. This overwrites the existing tables in destination
source_2 = sql_database(credentials).with_resources("features", "author")
info = pipeline.run(source_2, write_disposition="replace")
print(info)

# Load a table incrementally with append write disposition
# this is good when a table only has new rows inserted, but not updated
source_3 = sql_database(credentials).with_resources("genome")
source_3.genome.apply_hints(incremental=dlt.sources.incremental("created"))

info = pipeline.run(source_3, write_disposition="append")
print(info)


def load_entire_database() -> None:
"""Use the sql_database source to completely load all tables in a database"""
pipeline = dlt.pipeline(
pipeline_name="rfam", destination='bigquery', dataset_name="rfam_data"
)

# By default the sql_database source reflects all tables in the schema
# The database credentials are sourced from the `.dlt/secrets.toml` configuration
source = sql_database()

# Run the pipeline. For a large db this may take a while
info = pipeline.run(source, write_disposition="replace")
print(
humanize.precisedelta(
pipeline.last_trace.finished_at - pipeline.last_trace.started_at
)
)
print(info)


def load_standalone_table_resource() -> None:
"""Load a few known tables with the standalone sql_table resource, request full schema and deferred
table reflection"""
pipeline = dlt.pipeline(
pipeline_name="rfam_database",
destination='bigquery',
dataset_name="rfam_data",
full_refresh=True,
)

# Load a table incrementally starting at a given date
# Adding incremental via argument like this makes extraction more efficient
# as only rows newer than the start date are fetched from the table
# we also use `detect_precision_hints` to get detailed column schema
# and defer_table_reflect to reflect schema only during execution
family = sql_table(
credentials="mysql+pymysql://rfamro@mysql-rfam-public.ebi.ac.uk:4497/Rfam",
table="family",
incremental=dlt.sources.incremental(
"updated",
),
detect_precision_hints=True,
defer_table_reflect=True,
)
# columns will be empty here due to defer_table_reflect set to True
print(family.compute_table_schema())

# Load all data from another table
genome = sql_table(
credentials="mysql+pymysql://rfamro@mysql-rfam-public.ebi.ac.uk:4497/Rfam",
table="genome",
detect_precision_hints=True,
defer_table_reflect=True,
)

# Run the resources together
info = pipeline.extract([family, genome], write_disposition="merge")
print(info)
# Show inferred columns
print(pipeline.default_schema.to_pretty_yaml())


def select_columns() -> None:
"""Uses table adapter callback to modify list of columns to be selected"""
pipeline = dlt.pipeline(
pipeline_name="rfam_database",
destination='bigquery',
dataset_name="rfam_data_cols",
full_refresh=True,
)

def table_adapter(table: Table) -> None:
print(table.name)
if table.name == "family":
# this is SqlAlchemy table. _columns are writable
# let's drop updated column
table._columns.remove(table.columns["updated"])

family = sql_table(
credentials="mysql+pymysql://rfamro@mysql-rfam-public.ebi.ac.uk:4497/Rfam",
table="family",
chunk_size=10,
detect_precision_hints=True,
table_adapter_callback=table_adapter,
)

# also we do not want the whole table, so we add limit to get just one chunk (10 records)
pipeline.run(family.add_limit(1))
# only 10 rows
print(pipeline.last_trace.last_normalize_info)
# no "updated" column in "family" table
print(pipeline.default_schema.to_pretty_yaml())


def select_with_end_value_and_row_order() -> None:
"""Gets data from a table withing a specified range and sorts rows descending"""
pipeline = dlt.pipeline(
pipeline_name="rfam_database",
destination='bigquery',
dataset_name="rfam_data",
full_refresh=True,
)

# gets data from this range
start_date = pendulum.now().subtract(years=1)
end_date = pendulum.now()

family = sql_table(
credentials="mysql+pymysql://rfamro@mysql-rfam-public.ebi.ac.uk:4497/Rfam",
table="family",
incremental=dlt.sources.incremental( # declares desc row order
"updated", initial_value=start_date, end_value=end_date, row_order="desc"
),
chunk_size=10,
)
# also we do not want the whole table, so we add limit to get just one chunk (10 records)
pipeline.run(family.add_limit(1))
# only 10 rows
print(pipeline.last_trace.last_normalize_info)


def my_sql_via_pyarrow() -> None:
"""Uses pyarrow backend to load tables from mysql"""

# uncomment line below to get load_id into your data (slows pyarrow loading down)
# dlt.config["normalize.parquet_normalizer.add_dlt_load_id"] = True

# Create a pipeline
pipeline = dlt.pipeline(
pipeline_name="rfam_cx",
destination='bigquery',
dataset_name="rfam_data_arrow_4",
)

def _double_as_decimal_adapter(table: sa.Table) -> None:
"""Return double as double, not decimals"""
for column in table.columns.values():
if isinstance(column.type, sa.Double):
column.type.asdecimal = False

sql_alchemy_source = sql_database(
"mysql+pymysql://rfamro@mysql-rfam-public.ebi.ac.uk:4497/Rfam?&binary_prefix=true",
backend="pyarrow",
table_adapter_callback=_double_as_decimal_adapter,
).with_resources("family", "genome")

info = pipeline.run(sql_alchemy_source)
print(info)


def create_unsw_flow() -> None:
"""Uploads UNSW_Flow dataset to postgres via csv stream skipping dlt normalizer.
You need to download the dataset from https://github.com/rdpahalavan/nids-datasets
"""
from pyarrow.parquet import ParquetFile

# from dlt.destinations import postgres

# use those config to get 3x speedup on parallelism
# [sources.data_writer]
# file_max_bytes=3000000
# buffer_max_items=200000

# [normalize]
# workers=3

data_iter = ParquetFile("UNSW-NB15/Network-Flows/UNSW_Flow.parquet").iter_batches(
batch_size=128 * 1024
)

pipeline = dlt.pipeline(
pipeline_name="unsw_upload",
# destination=postgres("postgres://loader:loader@localhost:5432/dlt_data"),
destination='bigquery',
progress="log",
)
pipeline.run(
data_iter,
dataset_name="speed_test",
table_name="unsw_flow_7",
loader_file_format="csv",
)


def test_connectorx_speed() -> None:
"""Uses unsw_flow dataset (~2mln rows, 25+ columns) to test connectorx speed"""
import os

# from dlt.destinations import filesystem

unsw_table = sql_table(
"postgresql://loader:loader@localhost:5432/dlt_data",
"unsw_flow_7",
"speed_test",
# this is ignored by connectorx
chunk_size=100000,
backend="connectorx",
# keep source data types
detect_precision_hints=True,
# just to demonstrate how to setup a separate connection string for connectorx
backend_kwargs={"conn": "postgresql://loader:loader@localhost:5432/dlt_data"},
)

pipeline = dlt.pipeline(
pipeline_name="unsw_download",
destination='bigquery',
# destination=filesystem(os.path.abspath("../_storage/unsw")),
progress="log",
full_refresh=True,
)

info = pipeline.run(
unsw_table,
dataset_name="speed_test",
table_name="unsw_flow",
loader_file_format="parquet",
)
print(info)


def test_pandas_backend_verbatim_decimals() -> None:
pipeline = dlt.pipeline(
pipeline_name="rfam_cx",
destination='bigquery',
dataset_name="rfam_data_pandas_2",
)

def _double_as_decimal_adapter(table: sa.Table) -> None:
"""Emits decimals instead of floats."""
for column in table.columns.values():
if isinstance(column.type, sa.Float):
column.type.asdecimal = True

sql_alchemy_source = sql_database(
"mysql+pymysql://rfamro@mysql-rfam-public.ebi.ac.uk:4497/Rfam?&binary_prefix=true",
backend="pandas",
table_adapter_callback=_double_as_decimal_adapter,
chunk_size=100000,
# set coerce_float to False to represent them as string
backend_kwargs={"coerce_float": False, "dtype_backend": "numpy_nullable"},
# preserve full typing info. this will parse
detect_precision_hints=True,
).with_resources("family", "genome")

info = pipeline.run(sql_alchemy_source)
print(info)


if __name__ == "__main__":
# Load selected tables with different settings
load_select_tables_from_database()

# load a table and select columns
# select_columns()

# load_entire_database()
# select_with_end_value_and_row_order()

# Load tables with the standalone table resource
# load_standalone_table_resource()

# Load all tables from the database.
# Warning: The sample database is very large
# load_entire_database()

Provided you have set up your credentials, you can run your pipeline like a regular python script with the following command:

python sql_database_pipeline.py

4. Inspecting your load result

You can now inspect the state of your pipeline with the dlt cli:

dlt pipeline sql_database info

You can also use streamlit to inspect the contents of your BigQuery destination for this:

# install streamlit
pip install streamlit
# run the streamlit app for your pipeline with the dlt cli:
dlt pipeline sql_database show

5. Next steps to get your pipeline running in production

One of the beauties of dlt is, that we are just a plain Python library, so you can run your pipeline in any environment that supports Python >= 3.8. We have a couple of helpers and guides in our docs to get you there:

The Deploy section will show you how to deploy your pipeline to

  • Deploy with GitHub Actions: Learn how to deploy your dlt pipeline using GitHub Actions, a free CI/CD runner. Follow the guide here.
  • Deploy with Airflow and Google Composer: Discover how to deploy your dlt pipeline with Airflow, using Google Composer for managed environments. Check the instructions here.
  • Deploy with Google Cloud Functions: Find out how to deploy your dlt pipeline using Google Cloud Functions, a serverless execution environment. Follow the steps here.
  • Explore Other Deployment Options: Explore various other methods to deploy your dlt pipeline, including detailed walkthroughs and guides. See more here.

The running in production section will teach you about:

  • How to Monitor your pipeline: Learn how to effectively monitor your dlt pipeline in production by following this guide.
  • Set up alerts: Ensure you are notified of any issues or important events in your dlt pipeline by setting up alerts. Follow the instructions here.
  • Set up tracing: Implement tracing to get detailed insights into your pipeline's performance and operations. Check out the setup guide here.

Additional pipeline guides

This demo works on codespaces. Codespaces is a development environment available for free to anyone with a Github account. You'll be asked to fork the demo repository and from there the README guides you with further steps.
The demo uses the Continue VSCode extension.

Off to codespaces!

DHelp

Ask a question

Welcome to "Codex Central", your next-gen help center, driven by OpenAI's GPT-4 model. It's more than just a forum or a FAQ hub – it's a dynamic knowledge base where coders can find AI-assisted solutions to their pressing problems. With GPT-4's powerful comprehension and predictive abilities, Codex Central provides instantaneous issue resolution, insightful debugging, and personalized guidance. Get your code running smoothly with the unparalleled support at Codex Central - coding help reimagined with AI prowess.