Skip to main content

Python AWS S3 Data Loading to PostgreSQL using dlt Library

Connecting other file sources

This document describes how to set up loading from aws 3, but our filesystem source can not only stream from s3, but also from Google Cloud Storage, Google Drive, Azure, or local filesystem. Learn more about this here.

Need help deploying these pipelines, or figuring out how to run them in your data stack?

Join our Slack community or book a call with our support engineer Adrian.

This guide provides instructions on how to use dlt, an open source Python library, to stream CSV, Parquet, and JSONL files from AWS S3 to PostgreSQL. dlt supports data streaming from various sources such as AWS S3, Google Cloud Storage, Google Drive, Azure, or your local filesystem. On the other hand, PostgreSQL is a robust, open source object-relational database system, capable of handling complex data workloads. With the combination of dlt and PostgreSQL, you can efficiently manage your data streaming and storage needs. For more details about the source, visit the dlt documentation here.

dlt Key Features

  • Postgres Installation: dlt library comes with PostgreSQL dependencies. To install, simply run pip install dlt[postgres]. For more details, visit here.
  • Governance Support: dlt pipelines offer robust governance support through pipeline metadata utilization, schema enforcement and curation, and schema change alerts. Read more about it here.
  • Data Types: dlt supports a wide range of data types such as text, double, bool, timestamp, date, time, bigint, binary, complex, decimal, and wei. For more information, visit here.
  • Filesystem & Buckets: dlt supports remote file systems and bucket storages like S3, Google Storage, or Azure Blob Storage. To install the DLT library with filesystem dependencies, run pip install dlt[filesystem]. Learn more here.
  • Authentication Types: Snowflake destination in dlt accepts three authentication types - password authentication, key pair authentication, and external authentication. Learn more about it here.

Getting started with your pipeline locally

0. Prerequisites

dlt requires Python 3.8 or higher. Additionally, you need to have the pip package manager installed, and we recommend using a virtual environment to manage your dependencies. You can learn more about preparing your computer for dlt in our installation reference.

1. Install dlt

First you need to install the dlt library with the correct extras for PostgreSQL:

pip install "dlt[postgres]"

The dlt cli has a useful command to get you started with any combination of source and destination. For this example, we want to load data from AWS S3 to PostgreSQL. You can run the following commands to create a starting point for loading data from AWS S3 to PostgreSQL:

# create a new directory
mkdir my_filesystem_pipeline
cd my_filesystem_pipeline
# initialize a new pipeline with your source and destination
dlt init filesystem postgres
# install the required dependencies
pip install -r requirements.txt

The last command will install the required dependencies for your pipeline. The dependencies are listed in the requirements.txt:

dlt[postgres]>=0.4.3a0
openpyxl>=3.0.0

You now have the following folder structure in your project:

my_filesystem_pipeline/
├── .dlt/
│ ├── config.toml # configs for your pipeline
│ └── secrets.toml # secrets for your pipeline
├── filesystem/ # folder with source specific files
│ └── ...
├── filesystem_pipeline.py # your main pipeline script
├── requirements.txt # dependencies for your pipeline
└── .gitignore # ignore files for git (not required)

2. Configuring your source and destination credentials

The dlt cli will have created a .dlt directory in your project folder. This directory contains a config.toml file and a secrets.toml file that you can use to configure your pipeline. The automatically created version of these files look like this:

generated config.toml

# put your configuration values here

[runtime]
log_level="WARNING" # the system log level of dlt
# use the dlthub_telemetry setting to enable/disable anonymous usage data reporting, see https://dlthub.com/docs/telemetry
dlthub_telemetry = true

[sources.filesystem]
bucket_url = "bucket_url" # please set me up!

generated secrets.toml

# put your secret values and credentials here. do not share this file and do not push it to github

[sources.filesystem.credentials]
aws_access_key_id = "aws_access_key_id" # please set me up!
aws_secret_access_key = "aws_secret_access_key" # please set me up!

[destination.postgres.credentials]
database = "database" # please set me up!
password = "password" # please set me up!
username = "username" # please set me up!
host = "host" # please set me up!
port = 5432
connect_timeout = 15

2.1. Adjust the generated code to your usecase

Further help setting up your source and destinations
  • Read more about setting up the AWS S3 source in our docs.
  • Read more about setting up the PostgreSQL destination in our docs.

3. Running your pipeline for the first time

The dlt cli has also created a main pipeline script for you at filesystem_pipeline.py, as well as a folder filesystem that contains additional python files for your source. These files are your local copies which you can modify to fit your needs. In some cases you may find that you only need to do small changes to your pipelines or add some configurations, in other cases these files can serve as a working starting point for your code, but will need to be adjusted to do what you need them to do.

The main pipeline script will look something like this:


import os
import posixpath
from typing import Iterator

import dlt
from dlt.sources import TDataItems

try:
from .filesystem import FileItemDict, filesystem, readers, read_csv # type: ignore
except ImportError:
from filesystem import (
FileItemDict,
filesystem,
readers,
read_csv,
)


TESTS_BUCKET_URL = posixpath.abspath("../tests/filesystem/samples/")


def stream_and_merge_csv() -> None:
"""Demonstrates how to scan folder with csv files, load them in chunk and merge on date column with the previous load"""
pipeline = dlt.pipeline(
pipeline_name="standard_filesystem_csv",
destination='postgres',
dataset_name="met_data",
)
# met_data contains 3 columns, where "date" column contain a date on which we want to merge
# load all csvs in A801
met_files = readers(
bucket_url=TESTS_BUCKET_URL, file_glob="met_csv/A801/*.csv"
).read_csv()
# tell dlt to merge on date
met_files.apply_hints(write_disposition="merge", merge_key="date")
# NOTE: we load to met_csv table
load_info = pipeline.run(met_files.with_name("met_csv"))
print(load_info)
print(pipeline.last_trace.last_normalize_info)

# now let's simulate loading on next day. not only current data appears but also updated record for the previous day are present
# all the records for previous day will be replaced with new records
met_files = readers(
bucket_url=TESTS_BUCKET_URL, file_glob="met_csv/A801/*.csv"
).read_csv()
met_files.apply_hints(write_disposition="merge", merge_key="date")
load_info = pipeline.run(met_files.with_name("met_csv"))

# you can also do dlt pipeline standard_filesystem_csv show to confirm that all A801 were replaced with A803 records for overlapping day
print(load_info)
print(pipeline.last_trace.last_normalize_info)


def read_csv_with_duckdb() -> None:
pipeline = dlt.pipeline(
pipeline_name="standard_filesystem",
destination='postgres',
dataset_name="met_data_duckdb",
)

# load all the CSV data, excluding headers
met_files = readers(
bucket_url=TESTS_BUCKET_URL, file_glob="met_csv/A801/*.csv"
).read_csv_duckdb(chunk_size=1000, header=True)

load_info = pipeline.run(met_files)

print(load_info)
print(pipeline.last_trace.last_normalize_info)


def read_csv_duckdb_compressed() -> None:
pipeline = dlt.pipeline(
pipeline_name="standard_filesystem",
destination='postgres',
dataset_name="taxi_data",
full_refresh=True,
)

met_files = readers(
bucket_url=TESTS_BUCKET_URL,
file_glob="gzip/*",
).read_csv_duckdb()

load_info = pipeline.run(met_files)
print(load_info)
print(pipeline.last_trace.last_normalize_info)


def read_parquet_and_jsonl_chunked() -> None:
pipeline = dlt.pipeline(
pipeline_name="standard_filesystem",
destination='postgres',
dataset_name="teams_data",
)
# When using the readers resource, you can specify a filter to select only the files you
# want to load including a glob pattern. If you use a recursive glob pattern, the filenames
# will include the path to the file inside the bucket_url.

# JSONL reading (in large chunks!)
jsonl_reader = readers(TESTS_BUCKET_URL, file_glob="**/*.jsonl").read_jsonl(
chunksize=10000
)
# PARQUET reading
parquet_reader = readers(TESTS_BUCKET_URL, file_glob="**/*.parquet").read_parquet()
# load both folders together to specified tables
load_info = pipeline.run(
[
jsonl_reader.with_name("jsonl_team_data"),
parquet_reader.with_name("parquet_team_data"),
]
)
print(load_info)
print(pipeline.last_trace.last_normalize_info)


def read_custom_file_type_excel() -> None:
"""Here we create an extract pipeline using filesystem resource and read_csv transformer"""

# instantiate filesystem directly to get list of files (FileItems) and then use read_excel transformer to get
# content of excel via pandas

@dlt.transformer(standalone=True)
def read_excel(
items: Iterator[FileItemDict], sheet_name: str
) -> Iterator[TDataItems]:
import pandas as pd

for file_obj in items:
with file_obj.open() as file:
yield pd.read_excel(file, sheet_name).to_dict(orient="records")

freshman_xls = filesystem(
bucket_url=TESTS_BUCKET_URL, file_glob="../custom/freshman_kgs.xlsx"
) | read_excel("freshman_table")

load_info = dlt.run(
freshman_xls.with_name("freshman"),
destination='postgres',
dataset_name="freshman_data",
)
print(load_info)


def copy_files_resource(local_folder: str) -> None:
"""Demonstrates how to copy files locally by adding a step to filesystem resource and the to load the download listing to db"""
pipeline = dlt.pipeline(
pipeline_name="standard_filesystem_copy",
destination='postgres',
dataset_name="standard_filesystem_data",
)

# a step that copies files into test storage
def _copy(item: FileItemDict) -> FileItemDict:
# instantiate fsspec and copy file
dest_file = os.path.join(local_folder, item["file_name"])
# create dest folder
os.makedirs(os.path.dirname(dest_file), exist_ok=True)
# download file
item.fsspec.download(item["file_url"], dest_file)
# return file item unchanged
return item

# use recursive glob pattern and add file copy step
downloader = filesystem(TESTS_BUCKET_URL, file_glob="**").add_map(_copy)

# NOTE: you do not need to load any data to execute extract, below we obtain
# a list of files in a bucket and also copy them locally
# listing = list(downloader)
# print(listing)

# download to table "listing"
# downloader = filesystem(TESTS_BUCKET_URL, file_glob="**").add_map(_copy)
load_info = pipeline.run(
downloader.with_name("listing"), write_disposition="replace"
)
# pretty print the information on data that was loaded
print(load_info)
print(pipeline.last_trace.last_normalize_info)


def read_files_incrementally_mtime() -> None:
pipeline = dlt.pipeline(
pipeline_name="standard_filesystem_incremental",
destination='postgres',
dataset_name="file_tracker",
)

# here we modify filesystem resource so it will track only new csv files
# such resource may be then combined with transformer doing further processing
new_files = filesystem(bucket_url=TESTS_BUCKET_URL, file_glob="csv/*")
# add incremental on modification time
new_files.apply_hints(incremental=dlt.sources.incremental("modification_date"))
load_info = pipeline.run((new_files | read_csv()).with_name("csv_files"))
print(load_info)
print(pipeline.last_trace.last_normalize_info)

# load again - no new files!
new_files = filesystem(bucket_url=TESTS_BUCKET_URL, file_glob="csv/*")
# add incremental on modification time
new_files.apply_hints(incremental=dlt.sources.incremental("modification_date"))
load_info = pipeline.run((new_files | read_csv()).with_name("csv_files"))
print(load_info)
print(pipeline.last_trace.last_normalize_info)


if __name__ == "__main__":
copy_files_resource("_storage")
stream_and_merge_csv()
read_parquet_and_jsonl_chunked()
read_custom_file_type_excel()
read_files_incrementally_mtime()
read_csv_with_duckdb()
read_csv_duckdb_compressed()

Provided you have set up your credentials, you can run your pipeline like a regular python script with the following command:

python filesystem_pipeline.py

4. Inspecting your load result

You can now inspect the state of your pipeline with the dlt cli:

dlt pipeline filesystem_pipeline info

You can also use streamlit to inspect the contents of your PostgreSQL destination for this:

# install streamlit
pip install streamlit
# run the streamlit app for your pipeline with the dlt cli:
dlt pipeline filesystem_pipeline show

5. Next steps to get your pipeline running in production

One of the beauties of dlt is, that we are just a plain Python library, so you can run your pipeline in any environment that supports Python >= 3.8. We have a couple of helpers and guides in our docs to get you there:

The Deploy section will show you how to deploy your pipeline to

  • Deploy with Github Actions: With dlt you can easily deploy your pipelines using Github Actions. This is a CI/CD runner that you can use basically for free.
  • Deploy with Airflow: dlt provides support for Airflow, a platform to programmatically author, schedule and monitor workflows. It creates an Airflow DAG for your pipeline script that you should customize.
  • Deploy with Google Cloud Functions: If you're using Google Cloud, dlt allows you to deploy your pipelines with Google Cloud Functions, a serverless execution environment for building and connecting cloud services.
  • More Deployment Options: For other deployment options, you can refer to the deployment documentation on the dlt website.

The running in production section will teach you about:

  • Monitor Your Pipeline: dlt provides comprehensive tools to monitor your data pipelines, ensuring that they are functioning correctly and efficiently. You can learn more about monitoring your pipelines in the Monitoring Guide.
  • Set up Alerts: To ensure that you are promptly informed of any issues with your data pipelines, dlt allows you to set up alerts. This feature allows you to respond quickly to any problems and minimize downtime. Check out the Alerting Guide for more information.
  • Enable Tracing: Tracing is a powerful tool that allows you to track the execution of your data pipelines. This feature can help you identify bottlenecks and optimize your pipelines for better performance. Learn more about setting up tracing in the Tracing Guide.

Additional pipeline guides

This demo works on codespaces. Codespaces is a development environment available for free to anyone with a Github account. You'll be asked to fork the demo repository and from there the README guides you with further steps.
The demo uses the Continue VSCode extension.

Off to codespaces!

DHelp

Ask a question

Welcome to "Codex Central", your next-gen help center, driven by OpenAI's GPT-4 model. It's more than just a forum or a FAQ hub – it's a dynamic knowledge base where coders can find AI-assisted solutions to their pressing problems. With GPT-4's powerful comprehension and predictive abilities, Codex Central provides instantaneous issue resolution, insightful debugging, and personalized guidance. Get your code running smoothly with the unparalleled support at Codex Central - coding help reimagined with AI prowess.