Python Data Loading from aws s3
to google cloud storage
with dlt
This document describes how to set up loading from aws 3, but our filesystem source can not only stream from s3, but also from Google Cloud Storage, Google Drive, Azure, or local filesystem. Learn more about this here.
Join our Slack community or book a call with our support engineer Adrian.
This page provides technical documentation for using the dlt
open-source Python library to stream CSV, Parquet, and JSONL files from AWS S3
to Google Cloud Storage
. The dlt
library enables easy data streaming from various sources, including AWS S3
, Google Drive, Azure, and local filesystems. The destination, Google Cloud Storage
, allows for the creation of datalakes and supports data upload in JSONL, Parquet, or CSV formats. For more detailed information about the dlt
source, please visit https://dlthub.com/docs/dlt-ecosystem/destinations/filesystem.
dlt
Key Features
Filesystem & Buckets: The filesystem destination stores data in remote file systems and bucket storages like S3, Google Storage, or Azure Blob Storage. It primarily serves as a staging area for other destinations, but can also be used to quickly build a data lake. More details can be found here.
Governance Support:
dlt
pipelines offer robust governance support through three key mechanisms: pipeline metadata utilization, schema enforcement and curation, and schema change alerts. These features contribute to better data management practices and overall data governance. Learn more about this feature here.Data Loading: All files are stored in a single folder with the name of the dataset that you passed to the
run
orload
methods ofpipeline
. The name of each file contains essential metadata on the content. More about data loading can be found here.Supported File Formats:
dlt
supports various file formats such as jsonl and parquet. This gives users the flexibility to choose the format that best suits their needs. More details on supported file formats can be found here.Staging Support:
dlt
supports AWS S3 and Google Cloud Storage as file staging destinations. This feature allowsdlt
to upload files in the parquet or jsonl format to the bucket provider and instructs Snowflake to copy their data directly into the database. More about staging support can be found here.
Getting started with your pipeline locally
0. Prerequisites
dlt
requires Python 3.8 or higher. Additionally, you need to have the pip
package manager installed, and we recommend using a virtual environment to manage your dependencies. You can
learn more about preparing your computer for dlt in our installation reference.
1. Install dlt
First you need to install the dlt
library with the correct extras for Google Cloud Storage
:
pip install "dlt[filesystem]"
The dlt
cli has a useful command to get you started with any combination of source and destination. For this example, we want to load data from AWS S3
to Google Cloud Storage
. You can run the following commands to create a starting point for loading data from AWS S3
to Google Cloud Storage
:
# create a new directory
mkdir my_filesystem_pipeline
cd my_filesystem_pipeline
# initialize a new pipeline with your source and destination
dlt init filesystem filesystem
# install the required dependencies
pip install -r requirements.txt
The last command will install the required dependencies for your pipeline. The dependencies are listed in the requirements.txt
:
dlt[filesystem]>=0.4.3a0
openpyxl>=3.0.0
You now have the following folder structure in your project:
my_filesystem_pipeline/
├── .dlt/
│ ├── config.toml # configs for your pipeline
│ └── secrets.toml # secrets for your pipeline
├── filesystem/ # folder with source specific files
│ └── ...
├── filesystem_pipeline.py # your main pipeline script
├── requirements.txt # dependencies for your pipeline
└── .gitignore # ignore files for git (not required)
2. Configuring your source and destination credentials
The dlt
cli will have created a .dlt
directory in your project folder. This directory contains a config.toml
file and a secrets.toml
file that you can use to configure your pipeline. The automatically created version of these files look like this:
generated config.toml
# put your configuration values here
[runtime]
log_level="WARNING" # the system log level of dlt
# use the dlthub_telemetry setting to enable/disable anonymous usage data reporting, see https://dlthub.com/docs/telemetry
dlthub_telemetry = true
[sources.filesystem]
bucket_url = "bucket_url" # please set me up!
generated secrets.toml
# put your secret values and credentials here. do not share this file and do not push it to github
[sources.filesystem.credentials]
aws_access_key_id = "aws_access_key_id" # please set me up!
aws_secret_access_key = "aws_secret_access_key" # please set me up!
[destination.filesystem]
dataset_name = "dataset_name" # please set me up!
bucket_url = "bucket_url" # please set me up!
[destination.filesystem.credentials]
aws_access_key_id = "aws_access_key_id" # please set me up!
aws_secret_access_key = "aws_secret_access_key" # please set me up!
2.1. Adjust the generated code to your usecase
The default filesystem destination is configured to connect to AWS S3. To load to Google Cloud Storage, update the [destination.filesystem.credentials]
section in your secrets.toml
.
[sources.filesystem.credentials]
client_email="Please set me up!"
private_key="Please set me up!"
project_id="Please set me up!"
By default, the filesystem destination will store your files as JSONL
. You can tell your pipeline to choose a different format with the loader_file_format
property that you can set directly on the pipeline or via your config.toml
. Available values are jsonl
, parquet
and csv
:
[pipeline] # in ./dlt/config.toml
loader_file_format="parquet"
3. Running your pipeline for the first time
The dlt
cli has also created a main pipeline script for you at filesystem_pipeline.py
, as well as a folder filesystem
that contains additional python files for
your source. These files are your local copies which you can modify to fit your needs. In some cases you may find that you only need to do small changes to your
pipelines or add some configurations, in other cases these files can serve as a working starting point for your code, but will need to be adjusted to do what
you need them to do.
The main pipeline script will look something like this:
import os
import posixpath
from typing import Iterator
import dlt
from dlt.sources import TDataItems
try:
from .filesystem import FileItemDict, filesystem, readers, read_csv # type: ignore
except ImportError:
from filesystem import (
FileItemDict,
filesystem,
readers,
read_csv,
)
TESTS_BUCKET_URL = posixpath.abspath("../tests/filesystem/samples/")
def stream_and_merge_csv() -> None:
"""Demonstrates how to scan folder with csv files, load them in chunk and merge on date column with the previous load"""
pipeline = dlt.pipeline(
pipeline_name="standard_filesystem_csv",
destination='filesystem',
dataset_name="met_data",
)
# met_data contains 3 columns, where "date" column contain a date on which we want to merge
# load all csvs in A801
met_files = readers(
bucket_url=TESTS_BUCKET_URL, file_glob="met_csv/A801/*.csv"
).read_csv()
# tell dlt to merge on date
met_files.apply_hints(write_disposition="merge", merge_key="date")
# NOTE: we load to met_csv table
load_info = pipeline.run(met_files.with_name("met_csv"))
print(load_info)
print(pipeline.last_trace.last_normalize_info)
# now let's simulate loading on next day. not only current data appears but also updated record for the previous day are present
# all the records for previous day will be replaced with new records
met_files = readers(
bucket_url=TESTS_BUCKET_URL, file_glob="met_csv/A801/*.csv"
).read_csv()
met_files.apply_hints(write_disposition="merge", merge_key="date")
load_info = pipeline.run(met_files.with_name("met_csv"))
# you can also do dlt pipeline standard_filesystem_csv show to confirm that all A801 were replaced with A803 records for overlapping day
print(load_info)
print(pipeline.last_trace.last_normalize_info)
def read_csv_with_duckdb() -> None:
pipeline = dlt.pipeline(
pipeline_name="standard_filesystem",
destination='filesystem',
dataset_name="met_data_duckdb",
)
# load all the CSV data, excluding headers
met_files = readers(
bucket_url=TESTS_BUCKET_URL, file_glob="met_csv/A801/*.csv"
).read_csv_duckdb(chunk_size=1000, header=True)
load_info = pipeline.run(met_files)
print(load_info)
print(pipeline.last_trace.last_normalize_info)
def read_csv_duckdb_compressed() -> None:
pipeline = dlt.pipeline(
pipeline_name="standard_filesystem",
destination='filesystem',
dataset_name="taxi_data",
full_refresh=True,
)
met_files = readers(
bucket_url=TESTS_BUCKET_URL,
file_glob="gzip/*",
).read_csv_duckdb()
load_info = pipeline.run(met_files)
print(load_info)
print(pipeline.last_trace.last_normalize_info)
def read_parquet_and_jsonl_chunked() -> None:
pipeline = dlt.pipeline(
pipeline_name="standard_filesystem",
destination='filesystem',
dataset_name="teams_data",
)
# When using the readers resource, you can specify a filter to select only the files you
# want to load including a glob pattern. If you use a recursive glob pattern, the filenames
# will include the path to the file inside the bucket_url.
# JSONL reading (in large chunks!)
jsonl_reader = readers(TESTS_BUCKET_URL, file_glob="**/*.jsonl").read_jsonl(
chunksize=10000
)
# PARQUET reading
parquet_reader = readers(TESTS_BUCKET_URL, file_glob="**/*.parquet").read_parquet()
# load both folders together to specified tables
load_info = pipeline.run(
[
jsonl_reader.with_name("jsonl_team_data"),
parquet_reader.with_name("parquet_team_data"),
]
)
print(load_info)
print(pipeline.last_trace.last_normalize_info)
def read_custom_file_type_excel() -> None:
"""Here we create an extract pipeline using filesystem resource and read_csv transformer"""
# instantiate filesystem directly to get list of files (FileItems) and then use read_excel transformer to get
# content of excel via pandas
@dlt.transformer(standalone=True)
def read_excel(
items: Iterator[FileItemDict], sheet_name: str
) -> Iterator[TDataItems]:
import pandas as pd
for file_obj in items:
with file_obj.open() as file:
yield pd.read_excel(file, sheet_name).to_dict(orient="records")
freshman_xls = filesystem(
bucket_url=TESTS_BUCKET_URL, file_glob="../custom/freshman_kgs.xlsx"
) | read_excel("freshman_table")
load_info = dlt.run(
freshman_xls.with_name("freshman"),
destination='filesystem',
dataset_name="freshman_data",
)
print(load_info)
def copy_files_resource(local_folder: str) -> None:
"""Demonstrates how to copy files locally by adding a step to filesystem resource and the to load the download listing to db"""
pipeline = dlt.pipeline(
pipeline_name="standard_filesystem_copy",
destination='filesystem',
dataset_name="standard_filesystem_data",
)
# a step that copies files into test storage
def _copy(item: FileItemDict) -> FileItemDict:
# instantiate fsspec and copy file
dest_file = os.path.join(local_folder, item["relative_path"])
# create dest folder
os.makedirs(os.path.dirname(dest_file), exist_ok=True)
# download file
item.fsspec.download(item["file_url"], dest_file)
# return file item unchanged
return item
# use recursive glob pattern and add file copy step
downloader = filesystem(TESTS_BUCKET_URL, file_glob="**").add_map(_copy)
# NOTE: you do not need to load any data to execute extract, below we obtain
# a list of files in a bucket and also copy them locally
# listing = list(downloader)
# print(listing)
# download to table "listing"
# downloader = filesystem(TESTS_BUCKET_URL, file_glob="**").add_map(_copy)
load_info = pipeline.run(
downloader.with_name("listing"), write_disposition="replace"
)
# pretty print the information on data that was loaded
print(load_info)
print(pipeline.last_trace.last_normalize_info)
def read_files_incrementally_mtime() -> None:
pipeline = dlt.pipeline(
pipeline_name="standard_filesystem_incremental",
destination='filesystem',
dataset_name="file_tracker",
)
# here we modify filesystem resource so it will track only new csv files
# such resource may be then combined with transformer doing further processing
new_files = filesystem(bucket_url=TESTS_BUCKET_URL, file_glob="csv/*")
# add incremental on modification time
new_files.apply_hints(incremental=dlt.sources.incremental("modification_date"))
load_info = pipeline.run((new_files | read_csv()).with_name("csv_files"))
print(load_info)
print(pipeline.last_trace.last_normalize_info)
# load again - no new files!
new_files = filesystem(bucket_url=TESTS_BUCKET_URL, file_glob="csv/*")
# add incremental on modification time
new_files.apply_hints(incremental=dlt.sources.incremental("modification_date"))
load_info = pipeline.run((new_files | read_csv()).with_name("csv_files"))
print(load_info)
print(pipeline.last_trace.last_normalize_info)
if __name__ == "__main__":
copy_files_resource("_storage")
stream_and_merge_csv()
read_parquet_and_jsonl_chunked()
read_custom_file_type_excel()
read_files_incrementally_mtime()
read_csv_with_duckdb()
read_csv_duckdb_compressed()
Provided you have set up your credentials, you can run your pipeline like a regular python script with the following command:
python filesystem_pipeline.py
4. Inspecting your load result
You can now inspect the state of your pipeline with the dlt
cli:
dlt pipeline filesystem_pipeline info
You can also use streamlit to inspect the contents of your Google Cloud Storage
destination for this:
# install streamlit
pip install streamlit
# run the streamlit app for your pipeline with the dlt cli:
dlt pipeline filesystem_pipeline show
5. Next steps to get your pipeline running in production
One of the beauties of dlt
is, that we are just a plain Python library, so you can run your pipeline in any environment that supports Python >= 3.8.
We have a couple of helpers and guides in our docs to get you there:
The Deploy section will show you how to deploy your pipeline to
- Deploy with GitHub Actions: Learn how to deploy your
dlt
pipeline using GitHub Actions for CI/CD. Follow the guide here. - Deploy with Airflow and Google Composer: This guide walks you through deploying a
dlt
pipeline with Airflow and Google Composer. Check it out here. - Deploy with Google Cloud Functions: Find out how to deploy your
dlt
pipeline using Google Cloud Functions by following the instructions here. - Other Deployment Options: Explore other methods to deploy your
dlt
pipeline, including various cloud services and orchestration tools here.
The running in production section will teach you about:
- How to Monitor your pipeline: Learn how to effectively monitor your
dlt
pipeline to ensure it runs smoothly and efficiently. How to Monitor your pipeline - Set up alerts: Configure alerts to stay informed about the status and performance of your
dlt
pipeline in real-time. Set up alerts - Set up tracing: Implement tracing to get detailed insights into the execution of your
dlt
pipeline, helping you to diagnose and resolve issues quickly. And set up tracing
Additional pipeline guides
- Load data from Pipedrive to Snowflake in python with dlt
- Load data from GitHub to Google Cloud Storage in python with dlt
- Load data from Pipedrive to Redshift in python with dlt
- Load data from Salesforce to Databricks in python with dlt
- Load data from HubSpot to AWS Athena in python with dlt
- Load data from Mux to AWS Athena in python with dlt
- Load data from Zendesk to Redshift in python with dlt
- Load data from Slack to Google Cloud Storage in python with dlt
- Load data from MongoDB to Azure Synapse in python with dlt
- Load data from Chess.com to DuckDB in python with dlt