Python Guide: Loading Data from local csv
to motherduck
using dlt
This document describes how to set up loading from aws 3, but our filesystem source can not only stream from s3, but also from Google Cloud Storage, Google Drive, Azure, or local filesystem. Learn more about this here.
Join our Slack community or book a call with our support engineer Adrian.
Welcome to our technical documentation page about loading data from Local CSV
to MotherDuck
using the open-source Python library dlt
. The Local CSV
source allows you to easily stream files from various platforms, including AWS S3, Google Cloud Storage, Google Drive, Azure, or your local file system. Once the data is loaded, it's processed through MotherDuck
, a quick in-process analytical database with a rich SQL dialect and deep client API integrations. More information about the source is available at this link.
dlt
Key Features
- Robust Governance Support:
dlt
pipelines offer robust governance support through three key mechanisms: pipeline metadata utilization, schema enforcement and curation, and schema change alerts. This ensures data consistency, traceability, and control throughout the data processing lifecycle. Learn more - Scalability and Fine-tuning:
dlt
offers several mechanisms and configuration options to scale up and fine-tune pipelines, including running extraction, normalization and load in parallel, writing sources and resources that are run in parallel via thread pools and async execution, and fine-tuning the memory buffers, intermediary file sizes and compression options. Learn more - Support for Different Destinations:
dlt
supports a variety of destinations including MotherDuck and Filesystem. It also provides detailed setup guides for each destination. Learn more about MotherDuck and Learn more about Filesystem - Provider Key Formats:
dlt
supports different formats for the keys and translates the standard format into provider-specific formats. It utilizes two TOML files:secrets.toml
for storing sensitive information andconfig.toml
for storing configuration values. Learn more - Detailed Tutorials:
dlt
provides detailed tutorials to guide users on how to efficiently use it to build a data pipeline. A practical example of building a data pipeline that loads data from the GitHub API into DuckDB is provided. Learn more
Getting started with your pipeline locally
0. Prerequisites
dlt
requires Python 3.8 or higher. Additionally, you need to have the pip
package manager installed, and we recommend using a virtual environment to manage your dependencies. You can
learn more about preparing your computer for dlt in our installation reference.
1. Install dlt
First you need to install the dlt
library with the correct extras for MotherDuck
:
pip install "dlt[motherduck]"
The dlt
cli has a useful command to get you started with any combination of source and destination. For this example, we want to load data from AWS S3
to MotherDuck
. You can run the following commands to create a starting point for loading data from AWS S3
to MotherDuck
:
# create a new directory
mkdir my_filesystem_pipeline
cd my_filesystem_pipeline
# initialize a new pipeline with your source and destination
dlt init filesystem motherduck
# install the required dependencies
pip install -r requirements.txt
The last command will install the required dependencies for your pipeline. The dependencies are listed in the requirements.txt
:
dlt[motherduck]>=0.4.3a0
openpyxl>=3.0.0
You now have the following folder structure in your project:
my_filesystem_pipeline/
├── .dlt/
│ ├── config.toml # configs for your pipeline
│ └── secrets.toml # secrets for your pipeline
├── filesystem/ # folder with source specific files
│ └── ...
├── filesystem_pipeline.py # your main pipeline script
├── requirements.txt # dependencies for your pipeline
└── .gitignore # ignore files for git (not required)
2. Configuring your source and destination credentials
The dlt
cli will have created a .dlt
directory in your project folder. This directory contains a config.toml
file and a secrets.toml
file that you can use to configure your pipeline. The automatically created version of these files look like this:
generated config.toml
# put your configuration values here
[runtime]
log_level="WARNING" # the system log level of dlt
# use the dlthub_telemetry setting to enable/disable anonymous usage data reporting, see https://dlthub.com/docs/telemetry
dlthub_telemetry = true
[sources.filesystem]
bucket_url = "bucket_url" # please set me up!
generated secrets.toml
# put your secret values and credentials here. do not share this file and do not push it to github
[sources.filesystem.credentials]
aws_access_key_id = "aws_access_key_id" # please set me up!
aws_secret_access_key = "aws_secret_access_key" # please set me up!
[destination.motherduck.credentials]
database = "database" # please set me up!
password = "password" # please set me up!
2.1. Adjust the generated code to your usecase
3. Running your pipeline for the first time
The dlt
cli has also created a main pipeline script for you at filesystem_pipeline.py
, as well as a folder filesystem
that contains additional python files for
your source. These files are your local copies which you can modify to fit your needs. In some cases you may find that you only need to do small changes to your
pipelines or add some configurations, in other cases these files can serve as a working starting point for your code, but will need to be adjusted to do what
you need them to do.
The main pipeline script will look something like this:
import os
import posixpath
from typing import Iterator
import dlt
from dlt.sources import TDataItems
try:
from .filesystem import FileItemDict, filesystem, readers, read_csv # type: ignore
except ImportError:
from filesystem import (
FileItemDict,
filesystem,
readers,
read_csv,
)
TESTS_BUCKET_URL = posixpath.abspath("../tests/filesystem/samples/")
def stream_and_merge_csv() -> None:
"""Demonstrates how to scan folder with csv files, load them in chunk and merge on date column with the previous load"""
pipeline = dlt.pipeline(
pipeline_name="standard_filesystem_csv",
destination='motherduck',
dataset_name="met_data",
)
# met_data contains 3 columns, where "date" column contain a date on which we want to merge
# load all csvs in A801
met_files = readers(
bucket_url=TESTS_BUCKET_URL, file_glob="met_csv/A801/*.csv"
).read_csv()
# tell dlt to merge on date
met_files.apply_hints(write_disposition="merge", merge_key="date")
# NOTE: we load to met_csv table
load_info = pipeline.run(met_files.with_name("met_csv"))
print(load_info)
print(pipeline.last_trace.last_normalize_info)
# now let's simulate loading on next day. not only current data appears but also updated record for the previous day are present
# all the records for previous day will be replaced with new records
met_files = readers(
bucket_url=TESTS_BUCKET_URL, file_glob="met_csv/A801/*.csv"
).read_csv()
met_files.apply_hints(write_disposition="merge", merge_key="date")
load_info = pipeline.run(met_files.with_name("met_csv"))
# you can also do dlt pipeline standard_filesystem_csv show to confirm that all A801 were replaced with A803 records for overlapping day
print(load_info)
print(pipeline.last_trace.last_normalize_info)
def read_csv_with_duckdb() -> None:
pipeline = dlt.pipeline(
pipeline_name="standard_filesystem",
destination='motherduck',
dataset_name="met_data_duckdb",
)
# load all the CSV data, excluding headers
met_files = readers(
bucket_url=TESTS_BUCKET_URL, file_glob="met_csv/A801/*.csv"
).read_csv_duckdb(chunk_size=1000, header=True)
load_info = pipeline.run(met_files)
print(load_info)
print(pipeline.last_trace.last_normalize_info)
def read_csv_duckdb_compressed() -> None:
pipeline = dlt.pipeline(
pipeline_name="standard_filesystem",
destination='motherduck',
dataset_name="taxi_data",
full_refresh=True,
)
met_files = readers(
bucket_url=TESTS_BUCKET_URL,
file_glob="gzip/*",
).read_csv_duckdb()
load_info = pipeline.run(met_files)
print(load_info)
print(pipeline.last_trace.last_normalize_info)
def read_parquet_and_jsonl_chunked() -> None:
pipeline = dlt.pipeline(
pipeline_name="standard_filesystem",
destination='motherduck',
dataset_name="teams_data",
)
# When using the readers resource, you can specify a filter to select only the files you
# want to load including a glob pattern. If you use a recursive glob pattern, the filenames
# will include the path to the file inside the bucket_url.
# JSONL reading (in large chunks!)
jsonl_reader = readers(TESTS_BUCKET_URL, file_glob="**/*.jsonl").read_jsonl(
chunksize=10000
)
# PARQUET reading
parquet_reader = readers(TESTS_BUCKET_URL, file_glob="**/*.parquet").read_parquet()
# load both folders together to specified tables
load_info = pipeline.run(
[
jsonl_reader.with_name("jsonl_team_data"),
parquet_reader.with_name("parquet_team_data"),
]
)
print(load_info)
print(pipeline.last_trace.last_normalize_info)
def read_custom_file_type_excel() -> None:
"""Here we create an extract pipeline using filesystem resource and read_csv transformer"""
# instantiate filesystem directly to get list of files (FileItems) and then use read_excel transformer to get
# content of excel via pandas
@dlt.transformer(standalone=True)
def read_excel(
items: Iterator[FileItemDict], sheet_name: str
) -> Iterator[TDataItems]:
import pandas as pd
for file_obj in items:
with file_obj.open() as file:
yield pd.read_excel(file, sheet_name).to_dict(orient="records")
freshman_xls = filesystem(
bucket_url=TESTS_BUCKET_URL, file_glob="../custom/freshman_kgs.xlsx"
) | read_excel("freshman_table")
load_info = dlt.run(
freshman_xls.with_name("freshman"),
destination='motherduck',
dataset_name="freshman_data",
)
print(load_info)
def copy_files_resource(local_folder: str) -> None:
"""Demonstrates how to copy files locally by adding a step to filesystem resource and the to load the download listing to db"""
pipeline = dlt.pipeline(
pipeline_name="standard_filesystem_copy",
destination='motherduck',
dataset_name="standard_filesystem_data",
)
# a step that copies files into test storage
def _copy(item: FileItemDict) -> FileItemDict:
# instantiate fsspec and copy file
dest_file = os.path.join(local_folder, item["file_name"])
# create dest folder
os.makedirs(os.path.dirname(dest_file), exist_ok=True)
# download file
item.fsspec.download(item["file_url"], dest_file)
# return file item unchanged
return item
# use recursive glob pattern and add file copy step
downloader = filesystem(TESTS_BUCKET_URL, file_glob="**").add_map(_copy)
# NOTE: you do not need to load any data to execute extract, below we obtain
# a list of files in a bucket and also copy them locally
# listing = list(downloader)
# print(listing)
# download to table "listing"
# downloader = filesystem(TESTS_BUCKET_URL, file_glob="**").add_map(_copy)
load_info = pipeline.run(
downloader.with_name("listing"), write_disposition="replace"
)
# pretty print the information on data that was loaded
print(load_info)
print(pipeline.last_trace.last_normalize_info)
def read_files_incrementally_mtime() -> None:
pipeline = dlt.pipeline(
pipeline_name="standard_filesystem_incremental",
destination='motherduck',
dataset_name="file_tracker",
)
# here we modify filesystem resource so it will track only new csv files
# such resource may be then combined with transformer doing further processing
new_files = filesystem(bucket_url=TESTS_BUCKET_URL, file_glob="csv/*")
# add incremental on modification time
new_files.apply_hints(incremental=dlt.sources.incremental("modification_date"))
load_info = pipeline.run((new_files | read_csv()).with_name("csv_files"))
print(load_info)
print(pipeline.last_trace.last_normalize_info)
# load again - no new files!
new_files = filesystem(bucket_url=TESTS_BUCKET_URL, file_glob="csv/*")
# add incremental on modification time
new_files.apply_hints(incremental=dlt.sources.incremental("modification_date"))
load_info = pipeline.run((new_files | read_csv()).with_name("csv_files"))
print(load_info)
print(pipeline.last_trace.last_normalize_info)
if __name__ == "__main__":
copy_files_resource("_storage")
stream_and_merge_csv()
read_parquet_and_jsonl_chunked()
read_custom_file_type_excel()
read_files_incrementally_mtime()
read_csv_with_duckdb()
read_csv_duckdb_compressed()
Provided you have set up your credentials, you can run your pipeline like a regular python script with the following command:
python filesystem_pipeline.py
4. Inspecting your load result
You can now inspect the state of your pipeline with the dlt
cli:
dlt pipeline filesystem_pipeline info
You can also use streamlit to inspect the contents of your MotherDuck
destination for this:
# install streamlit
pip install streamlit
# run the streamlit app for your pipeline with the dlt cli:
dlt pipeline filesystem_pipeline show
5. Next steps to get your pipeline running in production
One of the beauties of dlt
is, that we are just a plain Python library, so you can run your pipeline in any environment that supports Python >= 3.8.
We have a couple of helpers and guides in our docs to get you there:
The Deploy section will show you how to deploy your pipeline to
- Deploy with Github Actions:
dlt
allows you to deploy your pipeline using Github Actions. This is a CI/CD runner that you can use basically for free. You need to specify when the GitHub Action should run using a cron schedule expression. - Deploy with Airflow: You can also deploy a pipeline with Airflow. This will create an Airflow DAG for your pipeline script that you should customize. The DAG is using
dlt
Airflow wrapper to make this process trivial. - Deploy with Google Cloud Functions:
dlt
provides a way to deploy your pipeline with Google Cloud Functions. This is a serverless execution environment for building and connecting cloud services. - Other Deployment Options: There are also other ways to deploy your pipeline with
dlt
. You can find more information on the deploy a pipeline page.
The running in production section will teach you about:
- Monitor your pipeline: With
dlt
, you can monitor the progress and status of your data pipeline in real time. This allows you to quickly identify and address any issues that may arise. Check out the guide on How to Monitor your pipeline. - Set up alerts: Stay ahead of potential issues by setting up alerts.
dlt
allows you to configure alerts based on specific events or conditions in your pipeline. This way, you can quickly address any problems before they escalate. Learn more about how to Set up alerts. - Implement tracing: Tracing is an essential tool for diagnosing and debugging issues in your pipeline.
dlt
provides comprehensive tracing capabilities that allow you to track the execution of your pipeline and identify bottlenecks or errors. Find out how to set up tracing.
Additional pipeline guides
- Load data from Microsoft SQL Server to MotherDuck in python with dlt
- Load data from PostgreSQL to Microsoft SQL Server in python with dlt
- Load data from Shopify to AWS S3 in python with dlt
- Load data from MySQL to AWS S3 in python with dlt
- Load data from Stripe to AWS S3 in python with dlt
- Load data from MongoDB to ClickHouse in python with dlt
- Load data from Stripe to Microsoft SQL Server in python with dlt
- Load data from Salesforce to Dremio in python with dlt
- Load data from AWS S3 to MotherDuck in python with dlt
- Load data from GitHub to MotherDuck in python with dlt