Skip to main content

Load Data from MongoDB to The Local Filesystem Using dlt in Python

Need help deploying these pipelines, or figuring out how to run them in your data stack?

Join our Slack community or book a call with our support engineer Violetta.

dlt is an open-source Python library that simplifies the process of loading data from MongoDB to The Local Filesystem. MongoDB is a developer data platform built on a modern database, making it easy to work with data and bring ideas to market faster. The Local Filesystem destination stores data in a local folder, allowing you to create data lakes effortlessly. You can store data in formats like JSONL, Parquet, or CSV. This documentation will guide you through the steps to achieve seamless data transfer using dlt. For more details on MongoDB, visit here.

dlt Key Features

  • Pipeline Metadata: dlt pipelines leverage metadata to provide governance capabilities, including load IDs that enable incremental transformations and data vaulting. Learn more
  • Schema Enforcement and Curation: dlt empowers users to enforce and curate schemas, ensuring data consistency and quality. Read more
  • Schema Evolution: dlt notifies users of schema changes, allowing them to take necessary actions to maintain data integrity. Find out more
  • Scaling and Finetuning: dlt offers several mechanisms and configuration options to scale up and finetune pipelines, including parallel processing and memory buffer adjustments. Read more about performance
  • Authentication Types: Snowflake destination in dlt supports multiple authentication types, including password, key pair, and external authentication. Learn more

Getting started with your pipeline locally

0. Prerequisites

dlt requires Python 3.8 or higher. Additionally, you need to have the pip package manager installed, and we recommend using a virtual environment to manage your dependencies. You can learn more about preparing your computer for dlt in our installation reference.

1. Install dlt

First you need to install the dlt library with the correct extras for The Local Filesystem:

pip install "dlt[filesystem]"

The dlt cli has a useful command to get you started with any combination of source and destination. For this example, we want to load data from MongoDB to The Local Filesystem. You can run the following commands to create a starting point for loading data from MongoDB to The Local Filesystem:

# create a new directory
mkdir mongodb_pipeline
cd mongodb_pipeline
# initialize a new pipeline with your source and destination
dlt init mongodb filesystem
# install the required dependencies
pip install -r requirements.txt

The last command will install the required dependencies for your pipeline. The dependencies are listed in the requirements.txt:


pymongo>=4.3.3
dlt[filesystem]>=0.3.5

You now have the following folder structure in your project:

mongodb_pipeline/
├── .dlt/
│ ├── config.toml # configs for your pipeline
│ └── secrets.toml # secrets for your pipeline
├── mongodb/ # folder with source specific files
│ └── ...
├── mongodb_pipeline.py # your main pipeline script
├── requirements.txt # dependencies for your pipeline
└── .gitignore # ignore files for git (not required)

2. Configuring your source and destination credentials

The dlt cli will have created a .dlt directory in your project folder. This directory contains a config.toml file and a secrets.toml file that you can use to configure your pipeline. The automatically created version of these files look like this:

generated config.toml

# put your configuration values here

[runtime]
log_level="WARNING" # the system log level of dlt
# use the dlthub_telemetry setting to enable/disable anonymous usage data reporting, see https://dlthub.com/docs/telemetry
dlthub_telemetry = true

generated secrets.toml

# put your secret values and credentials here. do not share this file and do not push it to github

[sources.mongodb]
connection_url = "connection_url" # please set me up!

[destination.filesystem]
dataset_name = "dataset_name" # please set me up!
bucket_url = "bucket_url" # please set me up!

[destination.filesystem.credentials]
aws_access_key_id = "aws_access_key_id" # please set me up!
aws_secret_access_key = "aws_secret_access_key" # please set me up!

2.1. Adjust the generated code to your usecase

Further help setting up your source and destinations
  • Read more about setting up the MongoDB source in our docs.
  • Read more about setting up the The Local Filesystem destination in our docs.

The default filesystem destination is configured to connect to AWS S3. To load to a local directory, remove the [destination.filesystem.credentials] section from your secrets.toml and provide a local filepath as the bucket_url.

[destination.filesystem] # in ./dlt/secrets.toml
bucket_url="file://path/to/my/output"

By default, the filesystem destination will store your files as JSONL. You can tell your pipeline to choose a different format with the loader_file_format property that you can set directly on the pipeline or via your config.toml. Available values are jsonl, parquet and csv:

[pipeline] # in ./dlt/config.toml
loader_file_format="parquet"

3. Running your pipeline for the first time

The dlt cli has also created a main pipeline script for you at mongodb_pipeline.py, as well as a folder mongodb that contains additional python files for your source. These files are your local copies which you can modify to fit your needs. In some cases you may find that you only need to do small changes to your pipelines or add some configurations, in other cases these files can serve as a working starting point for your code, but will need to be adjusted to do what you need them to do.

The main pipeline script will look something like this:


from typing import List

import dlt
from dlt.common import pendulum
from dlt.common.pipeline import LoadInfo
from dlt.common.typing import TDataItems
from dlt.pipeline.pipeline import Pipeline

# As this pipeline can be run as standalone script or as part of the tests, we need to handle the import differently.
try:
from .mongodb import mongodb, mongodb_collection # type: ignore
except ImportError:
from mongodb import mongodb, mongodb_collection


def load_select_collection_db(pipeline: Pipeline = None) -> LoadInfo:
"""Use the mongodb source to reflect an entire database schema and load select tables from it.

This example sources data from a sample mongo database data from [mongodb-sample-dataset](https://github.com/neelabalan/mongodb-sample-dataset).
"""
if pipeline is None:
# Create a pipeline
pipeline = dlt.pipeline(
pipeline_name="local_mongo",
destination='filesystem',
dataset_name="mongo_select",
)

# Configure the source to load a few select collections incrementally
mflix = mongodb(incremental=dlt.sources.incremental("date")).with_resources(
"comments"
)

# Run the pipeline. The merge write disposition merges existing rows in the destination by primary key
info = pipeline.run(mflix, write_disposition="merge")

return info


def load_select_collection_db_items(parallel: bool = False) -> TDataItems:
"""Get the items from a mongo collection in parallel or not and return a list of records"""
comments = mongodb(
incremental=dlt.sources.incremental("date"), parallel=parallel
).with_resources("comments")
return list(comments)


def load_select_collection_db_filtered(pipeline: Pipeline = None) -> LoadInfo:
"""Use the mongodb source to reflect an entire database schema and load select tables from it.

This example sources data from a sample mongo database data from [mongodb-sample-dataset](https://github.com/neelabalan/mongodb-sample-dataset).
"""
if pipeline is None:
# Create a pipeline
pipeline = dlt.pipeline(
pipeline_name="local_mongo",
destination='filesystem',
dataset_name="mongo_select_incremental",
)

# Configure the source to load a few select collections incrementally
movies = mongodb_collection(
collection="movies",
incremental=dlt.sources.incremental(
"lastupdated", initial_value=pendulum.DateTime(2016, 1, 1, 0, 0, 0)
),
)

# Run the pipeline. The merge write disposition merges existing rows in the destination by primary key
info = pipeline.run(movies, write_disposition="merge")

return info


def load_select_collection_hint_db(pipeline: Pipeline = None) -> LoadInfo:
"""Use the mongodb source to reflect an entire database schema and load select tables from it.

This example sources data from a sample mongo database data from [mongodb-sample-dataset](https://github.com/neelabalan/mongodb-sample-dataset).
"""
if pipeline is None:
# Create a pipeline
pipeline = dlt.pipeline(
pipeline_name="local_mongo",
destination='filesystem',
dataset_name="mongo_select_hint",
)

# Load a table incrementally with append write disposition
# this is good when a table only has new rows inserted, but not updated
airbnb = mongodb().with_resources("listingsAndReviews")
airbnb.listingsAndReviews.apply_hints(
incremental=dlt.sources.incremental("last_scraped")
)

info = pipeline.run(airbnb, write_disposition="append")

return info


def load_entire_database(pipeline: Pipeline = None) -> LoadInfo:
"""Use the mongo source to completely load all collection in a database"""
if pipeline is None:
# Create a pipeline
pipeline = dlt.pipeline(
pipeline_name="local_mongo",
destination='filesystem',
dataset_name="mongo_database",
)

# By default the mongo source reflects all collections in the database
source = mongodb()

# Run the pipeline. For a large db this may take a while
info = pipeline.run(source, write_disposition="replace")

return info


if __name__ == "__main__":
# Credentials for the sample database.
# Load selected tables with different settings
print(load_select_collection_db())
# print(load_select_collection_db_filtered())

# Load all tables from the database.
# Warning: The sample database is large
# print(load_entire_database())

Provided you have set up your credentials, you can run your pipeline like a regular python script with the following command:

python mongodb_pipeline.py

4. Inspecting your load result

You can now inspect the state of your pipeline with the dlt cli:

dlt pipeline local_mongo info

You can also use streamlit to inspect the contents of your The Local Filesystem destination for this:

# install streamlit
pip install streamlit
# run the streamlit app for your pipeline with the dlt cli:
dlt pipeline local_mongo show

5. Next steps to get your pipeline running in production

One of the beauties of dlt is, that we are just a plain Python library, so you can run your pipeline in any environment that supports Python >= 3.8. We have a couple of helpers and guides in our docs to get you there:

The Deploy section will show you how to deploy your pipeline to

  • Deploy with GitHub Actions: Learn how to automate your pipeline deployment using GitHub Actions. Follow the guide here.
  • Deploy with Airflow and Google Composer: Discover how to deploy your pipeline using Airflow and Google Composer. Check out the detailed instructions here.
  • Deploy with Google Cloud Functions: Explore how to deploy your pipeline using Google Cloud Functions. Find the step-by-step guide here.
  • More Deployment Options: For additional deployment methods and detailed walkthroughs, visit the comprehensive guide here.

The running in production section will teach you about:

  • How to Monitor your pipeline: Learn how to effectively monitor your dlt pipeline in production to ensure smooth and efficient data processing. How to Monitor your pipeline
  • Set up alerts: Set up alerts to get notified of any issues or anomalies in your dlt pipeline, ensuring you can respond quickly to any problems. Set up alerts
  • Set up tracing: Implement tracing to gain detailed insights into the execution of your dlt pipeline, helping you debug and optimize your data workflows. Set up tracing

Additional pipeline guides

This demo works on codespaces. Codespaces is a development environment available for free to anyone with a Github account. You'll be asked to fork the demo repository and from there the README guides you with further steps.
The demo uses the Continue VSCode extension.

Off to codespaces!

DHelp

Ask a question

Welcome to "Codex Central", your next-gen help center, driven by OpenAI's GPT-4 model. It's more than just a forum or a FAQ hub – it's a dynamic knowledge base where coders can find AI-assisted solutions to their pressing problems. With GPT-4's powerful comprehension and predictive abilities, Codex Central provides instantaneous issue resolution, insightful debugging, and personalized guidance. Get your code running smoothly with the unparalleled support at Codex Central - coding help reimagined with AI prowess.