Python Guide: Using dlt
to Load Data from Rest API
to AWS S3
This example demonstrates how to use the rest_api to retrieve data from the GitHub Rest API, but will work with any HTTP Rest API. Please read:
- The rest_api docs to learn how to configure this verified source
- The OpenAPI generator docs to learn how to automatically configure a dlt rest_api source from an OpenAPI spec
- Our cool google colab example demonstrating the generator and the rest_api source
Join our Slack community or book a call with our support engineer Violetta.
This page provides technical documentation on how to use the open-source Python library, dlt
, to load data from a Rest API
to AWS S3
. The rest_api
verified source in dlt
supports data retrieval from any http Rest API
, while the AWS S3
filesystem destination allows for data storage on AWS S3
in formats such as JSONL, Parquet, or CSV. This process simplifies the creation of datalakes on AWS S3
. For more detailed information on the rest_api
source, please visit https://dlthub.com/docs/dlt-ecosystem/verified-sources/rest_api.
dlt
Key Features
Initialising a new dlt project: You can easily initialise a new dlt project with the command
dlt init
. This command sets up your pipeline with your chosen source and destination. Learn moreSetting up bucket storage and credentials:
dlt
creates a samplesecrets.toml
and requirements file for AWS S3 bucket. You can install those dependencies by runningpip install -r requirements.txt
. You can then edit thedlt
credentials file with your secret info. Learn moreBuilding a data pipeline with dlt: The tutorial guides you through the process of building a data pipeline that loads data from the GitHub API into DuckDB. It covers fetching data from the GitHub API, understanding and managing data loading behaviors, and more. Learn more
Filesystem and Buckets: Filesystem destination allows you to store data in remote file systems and bucket storages like S3, google storage, or azure blob storage. It uses fsspec to abstract file operations. Learn more
Advanced usage of dlt init: You can use
dlt init
with branches, local folders, or git repos. This allows you to deploy from a branch of theverified-sources
repo or from another repo. Learn more
Getting started with your pipeline locally
0. Prerequisites
dlt
requires Python 3.8 or higher. Additionally, you need to have the pip
package manager installed, and we recommend using a virtual environment to manage your dependencies. You can learn more about preparing your computer for dlt in our installation reference.
1. Install dlt
First you need to install the dlt
library with the correct extras for AWS S3
:
pip install "dlt[filesystem]"
The dlt
cli has a useful command to get you started with any combination of source and destination. For this example, we want to load data from Rest API
to AWS S3
. You can run the following commands to create a starting point for loading data from Rest API
to AWS S3
:
# create a new directory
mkdir rest_api_pipeline
cd rest_api_pipeline
# initialize a new pipeline with your source and destination
dlt init rest_api filesystem
# install the required dependencies
pip install -r requirements.txt
The last command will install the required dependencies for your pipeline. The dependencies are listed in the requirements.txt
:
dlt[filesystem]>=0.4.11
You now have the following folder structure in your project:
rest_api_pipeline/
├── .dlt/
│ ├── config.toml # configs for your pipeline
│ └── secrets.toml # secrets for your pipeline
├── rest_api/ # folder with source specific files
│ └── ...
├── rest_api_pipeline.py # your main pipeline script
├── requirements.txt # dependencies for your pipeline
└── .gitignore # ignore files for git (not required)
2. Configuring your source and destination credentials
The dlt
cli will have created a .dlt
directory in your project folder. This directory contains a config.toml
file and a secrets.toml
file that you can use to configure your pipeline. The automatically created version of these files look like this:
generated config.toml
# put your configuration values here
[runtime]
log_level="WARNING" # the system log level of dlt
# use the dlthub_telemetry setting to enable/disable anonymous usage data reporting, see https://dlthub.com/docs/telemetry
dlthub_telemetry = true
generated secrets.toml
# put your secret values and credentials here. do not share this file and do not push it to github
[sources.rest_api]
github_token = "github_token" # please set me up!
[destination.filesystem]
dataset_name = "dataset_name" # please set me up!
bucket_url = "bucket_url" # please set me up!
[destination.filesystem.credentials]
aws_access_key_id = "aws_access_key_id" # please set me up!
aws_secret_access_key = "aws_secret_access_key" # please set me up!
2.1. Adjust the generated code to your usecase
By default, the filesystem destination will store your files as JSONL
. You can tell your pipeline to choose a different format with the loader_file_format
property that you can set directly on the pipeline or via your config.toml
. Available values are jsonl
, parquet
and csv
:
[pipeline] # in ./dlt/config.toml
loader_file_format="parquet"
3. Running your pipeline for the first time
The dlt
cli has also created a main pipeline script for you at rest_api_pipeline.py
, as well as a folder rest_api
that contains additional python files for your source. These files are your local copies which you can modify to fit your needs. In some cases you may find that you only need to do small changes to your pipelines or add some configurations, in other cases these files can serve as a working starting point for your code, but will need to be adjusted to do what you need them to do.
The main pipeline script will look something like this:
from typing import Any
import dlt
from rest_api import (
RESTAPIConfig,
check_connection,
rest_api_source,
rest_api_resources,
)
@dlt.source
def github_source(github_token: str = dlt.secrets.value) -> Any:
# Create a REST API configuration for the GitHub API
# Use RESTAPIConfig to get autocompletion and type checking
config: RESTAPIConfig = {
"client": {
"base_url": "https://api.github.com/repos/dlt-hub/dlt/",
"auth": {
"type": "bearer",
"token": github_token,
},
},
# The default configuration for all resources and their endpoints
"resource_defaults": {
"primary_key": "id",
"write_disposition": "merge",
"endpoint": {
"params": {
"per_page": 100,
},
},
},
"resources": [
# This is a simple resource definition,
# that uses the endpoint path as a resource name:
# "pulls",
# Alternatively, you can define the endpoint as a dictionary
# {
# "name": "pulls", # <- Name of the resource
# "endpoint": "pulls", # <- This is the endpoint path
# }
# Or use a more detailed configuration:
{
"name": "issues",
"endpoint": {
"path": "issues",
# Query parameters for the endpoint
"params": {
"sort": "updated",
"direction": "desc",
"state": "open",
# Define `since` as a special parameter
# to incrementally load data from the API.
# This works by getting the updated_at value
# from the previous response data and using this value
# for the `since` query parameter in the next request.
"since": {
"type": "incremental",
"cursor_path": "updated_at",
"initial_value": "2024-01-25T11:21:28Z",
},
},
},
},
# The following is an example of a resource that uses
# a parent resource (`issues`) to get the `issue_number`
# and include it in the endpoint path:
{
"name": "issue_comments",
"endpoint": {
# The placeholder {issue_number} will be resolved
# from the parent resource
"path": "issues/{issue_number}/comments",
"params": {
# The value of `issue_number` will be taken
# from the `number` field in the `issues` resource
"issue_number": {
"type": "resolve",
"resource": "issues",
"field": "number",
}
},
},
# Include data from `id` field of the parent resource
# in the child data. The field name in the child data
# will be called `_issues_id` (_{resource_name}_{field_name})
"include_from_parent": ["id"],
},
],
}
yield from rest_api_resources(config)
def load_github() -> None:
pipeline = dlt.pipeline(
pipeline_name="rest_api_github",
destination='filesystem',
dataset_name="rest_api_data",
)
load_info = pipeline.run(github_source())
print(load_info)
def load_pokemon() -> None:
pipeline = dlt.pipeline(
pipeline_name="rest_api_pokemon",
destination='filesystem',
dataset_name="rest_api_data",
)
pokemon_source = rest_api_source(
{
"client": {
"base_url": "https://pokeapi.co/api/v2/",
# If you leave out the paginator, it will be inferred from the API:
# paginator: "json_response",
},
"resource_defaults": {
"endpoint": {
"params": {
"limit": 1000,
},
},
},
"resources": [
"pokemon",
"berry",
"location",
],
}
)
def check_network_and_authentication() -> None:
(can_connect, error_msg) = check_connection(
pokemon_source,
"not_existing_endpoint",
)
if not can_connect:
pass # do something with the error message
check_network_and_authentication()
load_info = pipeline.run(pokemon_source)
print(load_info)
if __name__ == "__main__":
load_github()
load_pokemon()
Provided you have set up your credentials, you can run your pipeline like a regular python script with the following command:
python rest_api_pipeline.py
4. Inspecting your load result
You can now inspect the state of your pipeline with the dlt
cli:
dlt pipeline rest_api_github info
You can also use streamlit to inspect the contents of your AWS S3
destination for this:
# install streamlit
pip install streamlit
# run the streamlit app for your pipeline with the dlt cli:
dlt pipeline rest_api_github show
5. Next steps to get your pipeline running in production
One of the beauties of dlt
is, that we are just a plain Python library, so you can run your pipeline in any environment that supports Python >= 3.8. We have a couple of helpers and guides in our docs to get you there:
The Deploy section will show you how to deploy your pipeline to
Deploy with GitHub Actions: Learn how to deploy your
dlt
pipeline using GitHub Actions for CI/CD. Follow the guide here.Deploy with Airflow and Google Composer: Set up your
dlt
pipeline with Airflow and Google Composer for a managed workflow orchestration. Get started here.Deploy with Google Cloud Functions: Utilize Google Cloud Functions to deploy your
dlt
pipeline serverlessly. Follow the instructions here.Explore Other Deployment Methods: Discover various other methods to deploy your
dlt
pipeline, including different cloud providers and orchestration tools. Learn more here.
The running in production section will teach you about:
- How to Monitor your pipeline: Learn how to effectively monitor your pipeline by following the guide on How to Monitor your pipeline.
- Set up alerts: Ensure you are promptly notified of any issues by setting up alerts as described in the Set up alerts guide.
- Set up tracing: Gain deeper insights into your pipeline's performance and issues by setting up tracing. Follow the instructions in the And set up tracing guide.
Available Sources and Resources
For this verified source the following sources and resources are available
Source github_source
"Rest API Source for GitHub, providing detailed data on issues and related comments."
Resource Name | Write Disposition | Description |
---|---|---|
issue_comments | merge | Contains information about the issue comments including the author, body of the comment, created date, and user details among other data. |
issues | merge | Contains information about the issues including the assignee details, author, body of the issue, comments, created date, and user details among other data. |
Additional pipeline guides
- Load data from Pipedrive to Redshift in python with dlt
- Load data from Fivetran to Azure Synapse in python with dlt
- Load data from Azure Cloud Storage to Snowflake in python with dlt
- Load data from Soundcloud to Azure Synapse in python with dlt
- Load data from Jira to Redshift in python with dlt
- Load data from Jira to Timescale in python with dlt
- Load data from Spotify to CockroachDB in python with dlt
- Load data from The Local Filesystem to EDB BigAnimal in python with dlt
- Load data from Star Trek to Redshift in python with dlt
- Load data from Rest API to DuckDB in python with dlt