Skip to main content

Load SoundCloud Data to Microsoft SQL Server using dlt in Python

Need help deploying these pipelines, or figuring out how to run them in your data stack?

Join our Slack community or book a call with our support engineer Violetta.

SoundCloud is an online audio distribution platform and music sharing website that enables its users to upload, promote, and share audio. This documentation explains how to load data from SoundCloud to Microsoft SQL Server using the open-source Python library dlt. Microsoft SQL Server is a relational database management system (RDBMS) that allows applications and tools to connect to a SQL Server instance or database, and communicate using Transact-SQL. By leveraging dlt, you can efficiently transfer your audio data from SoundCloud to Microsoft SQL Server, streamlining your data management and analysis processes. For more information about SoundCloud, visit here.

dlt Key Features

  • Automated maintenance: With schema inference and evolution and alerts, and with short declarative code, maintenance becomes simple. Read more
  • Run it where Python runs: On Airflow, serverless functions, notebooks. No external APIs, backends or containers, scales on micro and large infra alike. Read more
  • User-friendly interface: Declarative interface that removes knowledge obstacles for beginners while empowering senior professionals. Read more
  • Pipeline Metadata: Leverage metadata to provide governance capabilities including load IDs for tracking data loads and facilitating data lineage and traceability. Read more
  • Schema Enforcement and Curation: Enforce and curate schemas to ensure data consistency and quality, maintaining data integrity and facilitating standardized data handling practices. Read more

Getting started with your pipeline locally

OpenAPI Source Generator dlt-init-openapi

This walkthrough makes use of the dlt-init-openapi generator cli tool. You can read more about it here. The code generated by this tool uses the dlt rest_api verified source, docs for this are here.

0. Prerequisites

dlt and dlt-init-openapi requires Python 3.9 or higher. Additionally, you need to have the pip package manager installed, and we recommend using a virtual environment to manage your dependencies. You can learn more about preparing your computer for dlt in our installation reference.

1. Install dlt and dlt-init-openapi

First you need to install the dlt-init-openapi cli tool.

pip install dlt-init-openapi

The dlt-init-openapi cli is a powerful generator which you can use to turn any OpenAPI spec into a dlt source to ingest data from that api. The quality of the generator source is dependent on how well the API is designed and how accurate the OpenAPI spec you are using is. You may need to make tweaks to the generated code, you can learn more about this here.

# generate pipeline
# NOTE: add_limit adds a global limit, you can remove this later
# NOTE: you will need to select which endpoints to render, you
# can just hit Enter and all will be rendered.
dlt-init-openapi soundcloud --url https://raw.githubusercontent.com/dlt-hub/openapi-specs/main/open_api_specs/Public/soundcloud.yaml --global-limit 2
cd soundcloud_pipeline
# install generated requirements
pip install -r requirements.txt

The last command will install the required dependencies for your pipeline. The dependencies are listed in the requirements.txt:

dlt>=0.4.12

You now have the following folder structure in your project:

soundcloud_pipeline/
├── .dlt/
│ ├── config.toml # configs for your pipeline
│ └── secrets.toml # secrets for your pipeline
├── rest_api/ # The rest api verified source
│ └── ...
├── soundcloud/
│ └── __init__.py # TODO: possibly tweak this file
├── soundcloud_pipeline.py # your main pipeline script
├── requirements.txt # dependencies for your pipeline
└── .gitignore # ignore files for git (not required)

1.1. Tweak soundcloud/__init__.py

This file contains the generated configuration of your rest_api. You can continue with the next steps and leave it as is, but you might want to come back here and make adjustments if you need your rest_api source set up in a different way. The generated file for the soundcloud source will look like this:

Click to view full file (568 lines)

from typing import List

import dlt
from dlt.extract.source import DltResource
from rest_api import rest_api_source
from rest_api.typing import RESTAPIConfig


@dlt.source(name="soundcloud_source", max_table_nesting=2)
def soundcloud_source(
api_key: str = dlt.secrets.value,
base_url: str = dlt.config.value,
) -> List[DltResource]:

# source configuration
source_config: RESTAPIConfig = {
"client": {
"base_url": base_url,
"auth": {

"type": "api_key",
"api_key": api_key,
"name": "Authorization",
"location": "header"

},
"paginator": {
"type":
"offset",
"limit":
200,
"offset_param":
"offset",
"limit_param":
"limit",
"total_path":
"",
"maximum_offset":
20,
},
},
"resources":
[
{
"name": "get_meactivities",
"table_name": "activity",
"endpoint": {
"path": "/me/activities",
"params": {
# the parameters below can optionally be configured
# "access": "playable,preview",
# "limit": "50",

},
}
},
{
"name": "get_trackstrack_idcomments",
"table_name": "comment",
"endpoint": {
"path": "/tracks/{track_id}/comments",
"params": {
"track_id": "FILL_ME_IN", # TODO: fill in required path parameter
# the parameters below can optionally be configured
# "linked_partitioning": "OPTIONAL_CONFIG",

},
}
},
{
"name": "get_usersuser_idcomments",
"table_name": "comment",
"endpoint": {
"path": "/users/{user_id}/comments",
"params": {
"user_id": "FILL_ME_IN", # TODO: fill in required path parameter

},
}
},
# <h3>Security Advice</h3> * Using the [implicit OAuth authorization flow](https://tools.ietf.org/html/draft-ietf-oauth-security-topics-16#section-2.1.2) (`response_type=token`) is **not recommended**. It can suffer from access token leakage and access token replay attacks. Use `response_type=code` instead. * Use the `state` parameter for [CSRF protection](https://tools.ietf.org/html/draft-ietf-oauth-security-topics-16#section-4.7). Pass a sufficient random nonce here and verify this nonce again after retrieving the token.
{
"name": "get_connect",
"table_name": "connect",
"endpoint": {
"path": "/connect",
"params": {
"client_id": "FILL_ME_IN", # TODO: fill in required query parameter
"redirect_uri": "FILL_ME_IN", # TODO: fill in required query parameter
"response_type": "FILL_ME_IN", # TODO: fill in required query parameter
"scope": "FILL_ME_IN", # TODO: fill in required query parameter
# the parameters below can optionally be configured
# "state": "OPTIONAL_CONFIG",

},
}
},
{
"name": "get_meconnections",
"table_name": "connection",
"endpoint": {
"path": "/me/connections",
}
},
{
"name": "get_meconnectionsconnection_id",
"table_name": "connection",
"endpoint": {
"path": "/me/connections/{connection_id}",
"params": {
"connection_id": "FILL_ME_IN", # TODO: fill in required path parameter

},
}
},
{
"name": "get_usersuser_idfavorites",
"table_name": "favorite",
"endpoint": {
"path": "/users/{user_id}/favorites",
"params": {
"user_id": "FILL_ME_IN", # TODO: fill in required path parameter
# the parameters below can optionally be configured
# "limit": "50",
# "linked_partitioning": "OPTIONAL_CONFIG",

},
}
},
{
"name": "get_trackstrack_idfavoriters",
"table_name": "favoriter",
"endpoint": {
"path": "/tracks/{track_id}/favoriters",
"params": {
"track_id": "FILL_ME_IN", # TODO: fill in required path parameter

},
}
},
{
"name": "get_mefollowers",
"table_name": "follower",
"endpoint": {
"path": "/me/followers",
"params": {
# the parameters below can optionally be configured
# "limit": "50",

},
}
},
{
"name": "get_mefollowersfollower_id",
"table_name": "follower",
"endpoint": {
"path": "/me/followers/{follower_id}",
"params": {
"follower_id": "FILL_ME_IN", # TODO: fill in required path parameter

},
}
},
# Returns a list of users that follows (user_id).
{
"name": "get_usersuser_idfollowers",
"table_name": "follower",
"endpoint": {
"path": "/users/{user_id}/followers",
"params": {
"user_id": "FILL_ME_IN", # TODO: fill in required path parameter
# the parameters below can optionally be configured
# "limit": "50",

},
}
},
{
"name": "get_mefollowings",
"table_name": "following",
"endpoint": {
"path": "/me/followings",
}
},
{
"name": "get_mefollowingsuser_id",
"table_name": "following",
"endpoint": {
"path": "/me/followings/{user_id}",
"params": {
"user_id": "FILL_ME_IN", # TODO: fill in required path parameter

},
}
},
# Returns list of users that (user_id) follows.
{
"name": "get_usersuser_idfollowings",
"table_name": "following",
"endpoint": {
"path": "/users/{user_id}/followings",
"params": {
"user_id": "FILL_ME_IN", # TODO: fill in required path parameter
# the parameters below can optionally be configured
# "limit": "50",

},
}
},
# Returns (following_id) that is followed by (user_id).
{
"name": "get_usersuser_idfollowingsfollowing_id",
"table_name": "following",
"endpoint": {
"path": "/users/{user_id}/followings/{following_id}",
"params": {
"user_id": "FILL_ME_IN", # TODO: fill in required path parameter
"following_id": "FILL_ME_IN", # TODO: fill in required path parameter

},
}
},
{
"name": "get_mefavoritesids",
"table_name": "id",
"endpoint": {
"path": "/me/favorites/ids",
"params": {
# the parameters below can optionally be configured
# "limit": "50",

},
}
},
{
"name": "get_me",
"table_name": "me",
"endpoint": {
"path": "/me",
}
},
{
"name": "get_meactivitiesallown",
"table_name": "own",
"endpoint": {
"path": "/me/activities/all/own",
"params": {
# the parameters below can optionally be configured
# "access": "playable,preview",
# "limit": "50",

},
}
},
# Returns playlist info, playlist tracks and tracks owner info.
{
"name": "get_meplaylists",
"table_name": "playlist",
"endpoint": {
"path": "/me/playlists",
"params": {
# the parameters below can optionally be configured
# "limit": "50",

},
}
},
{
"name": "get_meplaylistsplaylist_id",
"table_name": "playlist",
"endpoint": {
"path": "/me/playlists/{playlist_id}",
"params": {
"playlist_id": "FILL_ME_IN", # TODO: fill in required path parameter

},
}
},
{
"name": "get_playlists",
"table_name": "playlist",
"endpoint": {
"path": "/playlists",
"params": {
"q": "FILL_ME_IN", # TODO: fill in required query parameter
# the parameters below can optionally be configured
# "access": "playable,preview",
# "linked_partitioning": "OPTIONAL_CONFIG",

},
}
},
{
"name": "get_playlistsplaylist_id",
"table_name": "playlist",
"endpoint": {
"path": "/playlists/{playlist_id}",
"params": {
"playlist_id": "FILL_ME_IN", # TODO: fill in required path parameter
# the parameters below can optionally be configured
# "secret_token": "OPTIONAL_CONFIG",
# "access": "playable,preview",

},
}
},
{
"name": "get_usersuser_idplaylists",
"table_name": "playlist",
"endpoint": {
"path": "/users/{user_id}/playlists",
"params": {
"user_id": "FILL_ME_IN", # TODO: fill in required path parameter
# the parameters below can optionally be configured
# "access": "playable,preview",
# "limit": "50",
# "linked_partitioning": "OPTIONAL_CONFIG",

},
}
},
{
"name": "get_trackstrack_idrelated",
"table_name": "related",
"endpoint": {
"path": "/tracks/{track_id}/related",
"params": {
"track_id": "FILL_ME_IN", # TODO: fill in required path parameter
# the parameters below can optionally be configured
# "access": "playable,preview",
# "linked_partitioning": "OPTIONAL_CONFIG",

},
}
},
{
"name": "get_playlistsplaylist_idreposters",
"table_name": "reposter",
"endpoint": {
"path": "/playlists/{playlist_id}/reposters",
"params": {
"playlist_id": "FILL_ME_IN", # TODO: fill in required path parameter
# the parameters below can optionally be configured
# "limit": "50",

},
}
},
{
"name": "get_trackstrack_idreposters",
"table_name": "reposter",
"endpoint": {
"path": "/tracks/{track_id}/reposters",
"params": {
"track_id": "FILL_ME_IN", # TODO: fill in required path parameter
# the parameters below can optionally be configured
# "limit": "50",

},
}
},
{
"name": "get_resolve",
"table_name": "resolve",
"endpoint": {
"path": "/resolve",
"params": {
"url": "FILL_ME_IN", # TODO: fill in required query parameter

},
}
},
{
"name": "get_trackstrack_idstreams",
"table_name": "stream",
"endpoint": {
"path": "/tracks/{track_id}/streams",
"params": {
"track_id": "FILL_ME_IN", # TODO: fill in required path parameter
# the parameters below can optionally be configured
# "secret_token": "OPTIONAL_CONFIG",

},
}
},
{
"name": "get_meactivitiestracks",
"table_name": "track",
"endpoint": {
"path": "/me/activities/tracks",
"params": {
# the parameters below can optionally be configured
# "access": "playable,preview",
# "limit": "50",

},
}
},
{
"name": "get_mefollowingstracks",
"table_name": "track",
"endpoint": {
"path": "/me/followings/tracks",
"params": {
# the parameters below can optionally be configured
# "access": "playable,preview",

},
}
},
{
"name": "get_melikestracks",
"table_name": "track",
"endpoint": {
"path": "/me/likes/tracks",
"params": {
# the parameters below can optionally be configured
# "limit": "50",
# "linked_partitioning": "OPTIONAL_CONFIG",

},
}
},
{
"name": "get_metracks",
"table_name": "track",
"endpoint": {
"path": "/me/tracks",
"params": {
# the parameters below can optionally be configured
# "limit": "50",
# "linked_partitioning": "OPTIONAL_CONFIG",

},
}
},
{
"name": "get_metrackstrack_id",
"table_name": "track",
"endpoint": {
"path": "/me/tracks/{track_id}",
"params": {
"track_id": "FILL_ME_IN", # TODO: fill in required path parameter

},
}
},
{
"name": "get_playlistsplaylist_idtracks",
"table_name": "track",
"endpoint": {
"path": "/playlists/{playlist_id}/tracks",
"params": {
"playlist_id": "FILL_ME_IN", # TODO: fill in required path parameter
# the parameters below can optionally be configured
# "secret_token": "OPTIONAL_CONFIG",
# "access": "playable,preview",
# "linked_partitioning": "OPTIONAL_CONFIG",

},
}
},
{
"name": "get_tracks",
"table_name": "track",
"endpoint": {
"path": "/tracks",
"params": {
"q": "FILL_ME_IN", # TODO: fill in required query parameter
# the parameters below can optionally be configured
# "ids": "OPTIONAL_CONFIG",
# "genres": "OPTIONAL_CONFIG",
# "tags": "OPTIONAL_CONFIG",
# "bpm": "OPTIONAL_CONFIG",
# "duration": "OPTIONAL_CONFIG",
# "created_at": "OPTIONAL_CONFIG",
# "access": "playable,preview",
# "linked_partitioning": "OPTIONAL_CONFIG",

},
}
},
{
"name": "get_trackstrack_id",
"table_name": "track",
"endpoint": {
"path": "/tracks/{track_id}",
"params": {
"track_id": "FILL_ME_IN", # TODO: fill in required path parameter
# the parameters below can optionally be configured
# "secret_token": "OPTIONAL_CONFIG",

},
}
},
{
"name": "get_usersuser_idlikestracks",
"table_name": "track",
"endpoint": {
"path": "/users/{user_id}/likes/tracks",
"params": {
"user_id": "FILL_ME_IN", # TODO: fill in required path parameter
# the parameters below can optionally be configured
# "access": "playable,preview",
# "limit": "50",
# "linked_partitioning": "OPTIONAL_CONFIG",

},
}
},
{
"name": "get_usersuser_idtracks",
"table_name": "track",
"endpoint": {
"path": "/users/{user_id}/tracks",
"params": {
"user_id": "FILL_ME_IN", # TODO: fill in required path parameter
# the parameters below can optionally be configured
# "access": "playable,preview",
# "limit": "50",
# "linked_partitioning": "OPTIONAL_CONFIG",

},
}
},
{
"name": "get_users",
"table_name": "user",
"endpoint": {
"path": "/users",
"params": {
"q": "FILL_ME_IN", # TODO: fill in required query parameter
# the parameters below can optionally be configured
# "ids": "OPTIONAL_CONFIG",
# "linked_partitioning": "OPTIONAL_CONFIG",

},
}
},
{
"name": "get_usersuser_id",
"table_name": "user",
"endpoint": {
"path": "/users/{user_id}",
"params": {
"user_id": "FILL_ME_IN", # TODO: fill in required path parameter

},
}
},
{
"name": "get_usersuser_idweb_profiles",
"table_name": "web_profile",
"endpoint": {
"path": "/users/{user_id}/web-profiles",
"params": {
"user_id": "FILL_ME_IN", # TODO: fill in required path parameter
# the parameters below can optionally be configured
# "limit": "50",

},
}
},
]
}

return rest_api_source(source_config)

2. Configuring your source and destination credentials

info

dlt-init-openapi will try to detect which authentication mechanism (if any) is used by the API in question and add a placeholder in your secrets.toml.

  • If you know your API needs authentication, but none was detected, you can learn more about adding authentication to the rest_api here.
  • OAuth detection currently is not supported, but you can supply your own authentication mechanism as outlined here.

The dlt cli will have created a .dlt directory in your project folder. This directory contains a config.toml file and a secrets.toml file that you can use to configure your pipeline. The automatically created version of these files look like this:

generated config.toml


[runtime]
log_level="INFO"

[sources.soundcloud]
# Base URL for the API
base_url = "https://api.soundcloud.com"

generated secrets.toml


[sources.soundcloud]
# secrets for your soundcloud source
api_key = "FILL ME OUT" # TODO: fill in your credentials

2.1. Adjust the generated code to your usecase

Further help setting up your source and destinations

At this time, the dlt-init-openapi cli tool will always create pipelines that load to a local duckdb instance. Switching to a different destination is trivial, all you need to do is change the destination parameter in soundcloud_pipeline.py to mssql and supply the credentials as outlined in the destination doc linked below.

  • Read more about setting up the rest_api source in our docs.
  • Read more about setting up the Microsoft SQL Server destination in our docs.

3. Running your pipeline for the first time

The dlt cli has also created a main pipeline script for you at soundcloud_pipeline.py, as well as a folder soundcloud that contains additional python files for your source. These files are your local copies which you can modify to fit your needs. In some cases you may find that you only need to do small changes to your pipelines or add some configurations, in other cases these files can serve as a working starting point for your code, but will need to be adjusted to do what you need them to do.

The main pipeline script will look something like this:


import dlt

from soundcloud import soundcloud_source


if __name__ == "__main__":
pipeline = dlt.pipeline(
pipeline_name="soundcloud_pipeline",
destination='duckdb',
dataset_name="soundcloud_data",
progress="log",
export_schema_path="schemas/export"
)
source = soundcloud_source()
info = pipeline.run(source)
print(info)

Provided you have set up your credentials, you can run your pipeline like a regular python script with the following command:

python soundcloud_pipeline.py

4. Inspecting your load result

You can now inspect the state of your pipeline with the dlt cli:

dlt pipeline soundcloud_pipeline info

You can also use streamlit to inspect the contents of your Microsoft SQL Server destination for this:

# install streamlit
pip install streamlit
# run the streamlit app for your pipeline with the dlt cli:
dlt pipeline soundcloud_pipeline show

5. Next steps to get your pipeline running in production

One of the beauties of dlt is, that we are just a plain Python library, so you can run your pipeline in any environment that supports Python >= 3.8. We have a couple of helpers and guides in our docs to get you there:

The Deploy section will show you how to deploy your pipeline to

  • Deploy with Github Actions: Learn how to use GitHub Actions for CI/CD to deploy your dlt pipelines. Follow the guide here.
  • Deploy with Airflow: Use Google Composer, a managed Airflow environment, to deploy your dlt pipelines. Detailed instructions can be found here.
  • Deploy with Google Cloud Functions: Discover how to deploy your dlt pipelines using Google Cloud Functions. Check out the guide here.
  • Explore other deployment options: Find out about other ways to deploy your dlt pipelines. Learn more here.

The running in production section will teach you about:

  • How to Monitor your pipeline: Learn how to effectively monitor your dlt pipeline in production to ensure smooth operation and quick identification of issues. Read more
  • Set up alerts: Set up alerts for your dlt pipeline to stay informed about critical events and errors, ensuring timely intervention. Read more
  • And set up tracing: Implement tracing in your dlt pipeline to capture detailed execution information, aiding in debugging and performance optimization. Read more

Available Sources and Resources

For this verified source the following sources and resources are available

Source Soundcloud

Streams SoundCloud user activities, interactions, and track details.

Resource NameWrite DispositionDescription
favoriterappendUsers who have favorited a particular track
ownappendTracks uploaded by the authenticated user
trackappendIndividual audio tracks available on SoundCloud
streamappendStream of activities related to the authenticated user
meappendProfile information of the authenticated user
followerappendUsers who follow the authenticated user
activityappendRecent activities of the authenticated user
connectappendConnection requests related to the authenticated user
connectionappendEstablished connections of the authenticated user
favoriteappendTracks favorited by the authenticated user
reposterappendUsers who have reposted a particular track
resolveappendResolves SoundCloud URLs to API resources
idappendIdentifiers for various SoundCloud resources
userappendProfile information of any user on SoundCloud
commentappendComments made on tracks
playlistappendPlaylists created by users
web_profileappendExternal web profiles linked to a user's SoundCloud account
relatedappendTracks related to a particular track
followingappendUsers that the authenticated user is following

Additional pipeline guides

This demo works on codespaces. Codespaces is a development environment available for free to anyone with a Github account. You'll be asked to fork the demo repository and from there the README guides you with further steps.
The demo uses the Continue VSCode extension.

Off to codespaces!

DHelp

Ask a question

Welcome to "Codex Central", your next-gen help center, driven by OpenAI's GPT-4 model. It's more than just a forum or a FAQ hub – it's a dynamic knowledge base where coders can find AI-assisted solutions to their pressing problems. With GPT-4's powerful comprehension and predictive abilities, Codex Central provides instantaneous issue resolution, insightful debugging, and personalized guidance. Get your code running smoothly with the unparalleled support at Codex Central - coding help reimagined with AI prowess.