Loading SoundCloud Data to Timescale Using dlt
in Python
We will be using the dlt PostgreSQL destination to connect to Timescale. You can get the connection string for your timescale database as described in the Timescale Docs.
Join our Slack community or book a call with our support engineer Violetta.
This documentation provides detailed instructions on how to load data from SoundCloud
into Timescale
using the open-source Python library dlt
. SoundCloud
is an online audio distribution platform and music sharing website that allows users to upload, promote, and share audio. Timescale
, built on PostgreSQL, is engineered to handle demanding workloads such as time series, vector, events, and analytics data, and comes with expert support at no extra charge. This guide will walk you through the steps required to extract data from SoundCloud
and load it into Timescale
using dlt
. For more information about SoundCloud
, visit their website.
dlt
Key Features
- Pipeline Metadata:
dlt
pipelines leverage metadata to provide governance capabilities. This metadata includes load IDs, which consist of a timestamp and pipeline name. Load IDs enable incremental transformations and data vaulting by tracking data loads and facilitating data lineage and traceability. Read more - Schema Enforcement and Curation:
dlt
empowers users to enforce and curate schemas, ensuring data consistency and quality. Schemas define the structure of normalized data and guide the processing and loading of data. By adhering to predefined schemas, pipelines maintain data integrity and facilitate standardized data handling practices. Read more - Schema Evolution:
dlt
enables proactive governance by alerting users to schema changes. When modifications occur in the source data’s schema, such as table or column alterations,dlt
notifies stakeholders, allowing them to take necessary actions, such as reviewing and validating the changes, updating downstream processes, or performing impact analysis. Read more - Scalability via Iterators, Chunking, and Parallelization:
dlt
offers scalable data extraction by leveraging iterators, chunking, and parallelization techniques. This approach allows for efficient processing of large datasets by breaking them down into manageable chunks. Read more - Implicit Extraction DAGs:
dlt
incorporates the concept of implicit extraction DAGs to handle the dependencies between data sources and their transformations automatically. A DAG represents a directed graph without cycles, where each node represents a data source or transformation step. Read more
Getting started with your pipeline locally
dlt-init-openapi
0. Prerequisites
dlt
and dlt-init-openapi
requires Python 3.9 or higher. Additionally, you need to have the pip
package manager installed, and we recommend using a virtual environment to manage your dependencies. You can learn more about preparing your computer for dlt in our installation reference.
1. Install dlt and dlt-init-openapi
First you need to install the dlt-init-openapi
cli tool.
pip install dlt-init-openapi
The dlt-init-openapi
cli is a powerful generator which you can use to turn any OpenAPI spec into a dlt
source to ingest data from that api. The quality of the generator source is dependent on how well the API is designed and how accurate the OpenAPI spec you are using is. You may need to make tweaks to the generated code, you can learn more about this here.
# generate pipeline
# NOTE: add_limit adds a global limit, you can remove this later
# NOTE: you will need to select which endpoints to render, you
# can just hit Enter and all will be rendered.
dlt-init-openapi soundcloud --url https://raw.githubusercontent.com/dlt-hub/openapi-specs/main/open_api_specs/Public/soundcloud.yaml --global-limit 2
cd soundcloud_pipeline
# install generated requirements
pip install -r requirements.txt
The last command will install the required dependencies for your pipeline. The dependencies are listed in the requirements.txt
:
dlt>=0.4.12
You now have the following folder structure in your project:
soundcloud_pipeline/
├── .dlt/
│ ├── config.toml # configs for your pipeline
│ └── secrets.toml # secrets for your pipeline
├── rest_api/ # The rest api verified source
│ └── ...
├── soundcloud/
│ └── __init__.py # TODO: possibly tweak this file
├── soundcloud_pipeline.py # your main pipeline script
├── requirements.txt # dependencies for your pipeline
└── .gitignore # ignore files for git (not required)
1.1. Tweak soundcloud/__init__.py
This file contains the generated configuration of your rest_api. You can continue with the next steps and leave it as is, but you might want to come back here and make adjustments if you need your rest_api
source set up in a different way. The generated file for the soundcloud source will look like this:
Click to view full file (568 lines)
from typing import List
import dlt
from dlt.extract.source import DltResource
from rest_api import rest_api_source
from rest_api.typing import RESTAPIConfig
@dlt.source(name="soundcloud_source", max_table_nesting=2)
def soundcloud_source(
api_key: str = dlt.secrets.value,
base_url: str = dlt.config.value,
) -> List[DltResource]:
# source configuration
source_config: RESTAPIConfig = {
"client": {
"base_url": base_url,
"auth": {
"type": "api_key",
"api_key": api_key,
"name": "Authorization",
"location": "header"
},
"paginator": {
"type":
"offset",
"limit":
200,
"offset_param":
"offset",
"limit_param":
"limit",
"total_path":
"",
"maximum_offset":
20,
},
},
"resources":
[
{
"name": "get_meactivities",
"table_name": "activity",
"endpoint": {
"path": "/me/activities",
"params": {
# the parameters below can optionally be configured
# "access": "playable,preview",
# "limit": "50",
},
}
},
{
"name": "get_trackstrack_idcomments",
"table_name": "comment",
"endpoint": {
"path": "/tracks/{track_id}/comments",
"params": {
"track_id": "FILL_ME_IN", # TODO: fill in required path parameter
# the parameters below can optionally be configured
# "linked_partitioning": "OPTIONAL_CONFIG",
},
}
},
{
"name": "get_usersuser_idcomments",
"table_name": "comment",
"endpoint": {
"path": "/users/{user_id}/comments",
"params": {
"user_id": "FILL_ME_IN", # TODO: fill in required path parameter
},
}
},
# <h3>Security Advice</h3> * Using the [implicit OAuth authorization flow](https://tools.ietf.org/html/draft-ietf-oauth-security-topics-16#section-2.1.2) (`response_type=token`) is **not recommended**. It can suffer from access token leakage and access token replay attacks. Use `response_type=code` instead. * Use the `state` parameter for [CSRF protection](https://tools.ietf.org/html/draft-ietf-oauth-security-topics-16#section-4.7). Pass a sufficient random nonce here and verify this nonce again after retrieving the token.
{
"name": "get_connect",
"table_name": "connect",
"endpoint": {
"path": "/connect",
"params": {
"client_id": "FILL_ME_IN", # TODO: fill in required query parameter
"redirect_uri": "FILL_ME_IN", # TODO: fill in required query parameter
"response_type": "FILL_ME_IN", # TODO: fill in required query parameter
"scope": "FILL_ME_IN", # TODO: fill in required query parameter
# the parameters below can optionally be configured
# "state": "OPTIONAL_CONFIG",
},
}
},
{
"name": "get_meconnections",
"table_name": "connection",
"endpoint": {
"path": "/me/connections",
}
},
{
"name": "get_meconnectionsconnection_id",
"table_name": "connection",
"endpoint": {
"path": "/me/connections/{connection_id}",
"params": {
"connection_id": "FILL_ME_IN", # TODO: fill in required path parameter
},
}
},
{
"name": "get_usersuser_idfavorites",
"table_name": "favorite",
"endpoint": {
"path": "/users/{user_id}/favorites",
"params": {
"user_id": "FILL_ME_IN", # TODO: fill in required path parameter
# the parameters below can optionally be configured
# "limit": "50",
# "linked_partitioning": "OPTIONAL_CONFIG",
},
}
},
{
"name": "get_trackstrack_idfavoriters",
"table_name": "favoriter",
"endpoint": {
"path": "/tracks/{track_id}/favoriters",
"params": {
"track_id": "FILL_ME_IN", # TODO: fill in required path parameter
},
}
},
{
"name": "get_mefollowers",
"table_name": "follower",
"endpoint": {
"path": "/me/followers",
"params": {
# the parameters below can optionally be configured
# "limit": "50",
},
}
},
{
"name": "get_mefollowersfollower_id",
"table_name": "follower",
"endpoint": {
"path": "/me/followers/{follower_id}",
"params": {
"follower_id": "FILL_ME_IN", # TODO: fill in required path parameter
},
}
},
# Returns a list of users that follows (user_id).
{
"name": "get_usersuser_idfollowers",
"table_name": "follower",
"endpoint": {
"path": "/users/{user_id}/followers",
"params": {
"user_id": "FILL_ME_IN", # TODO: fill in required path parameter
# the parameters below can optionally be configured
# "limit": "50",
},
}
},
{
"name": "get_mefollowings",
"table_name": "following",
"endpoint": {
"path": "/me/followings",
}
},
{
"name": "get_mefollowingsuser_id",
"table_name": "following",
"endpoint": {
"path": "/me/followings/{user_id}",
"params": {
"user_id": "FILL_ME_IN", # TODO: fill in required path parameter
},
}
},
# Returns list of users that (user_id) follows.
{
"name": "get_usersuser_idfollowings",
"table_name": "following",
"endpoint": {
"path": "/users/{user_id}/followings",
"params": {
"user_id": "FILL_ME_IN", # TODO: fill in required path parameter
# the parameters below can optionally be configured
# "limit": "50",
},
}
},
# Returns (following_id) that is followed by (user_id).
{
"name": "get_usersuser_idfollowingsfollowing_id",
"table_name": "following",
"endpoint": {
"path": "/users/{user_id}/followings/{following_id}",
"params": {
"user_id": "FILL_ME_IN", # TODO: fill in required path parameter
"following_id": "FILL_ME_IN", # TODO: fill in required path parameter
},
}
},
{
"name": "get_mefavoritesids",
"table_name": "id",
"endpoint": {
"path": "/me/favorites/ids",
"params": {
# the parameters below can optionally be configured
# "limit": "50",
},
}
},
{
"name": "get_me",
"table_name": "me",
"endpoint": {
"path": "/me",
}
},
{
"name": "get_meactivitiesallown",
"table_name": "own",
"endpoint": {
"path": "/me/activities/all/own",
"params": {
# the parameters below can optionally be configured
# "access": "playable,preview",
# "limit": "50",
},
}
},
# Returns playlist info, playlist tracks and tracks owner info.
{
"name": "get_meplaylists",
"table_name": "playlist",
"endpoint": {
"path": "/me/playlists",
"params": {
# the parameters below can optionally be configured
# "limit": "50",
},
}
},
{
"name": "get_meplaylistsplaylist_id",
"table_name": "playlist",
"endpoint": {
"path": "/me/playlists/{playlist_id}",
"params": {
"playlist_id": "FILL_ME_IN", # TODO: fill in required path parameter
},
}
},
{
"name": "get_playlists",
"table_name": "playlist",
"endpoint": {
"path": "/playlists",
"params": {
"q": "FILL_ME_IN", # TODO: fill in required query parameter
# the parameters below can optionally be configured
# "access": "playable,preview",
# "linked_partitioning": "OPTIONAL_CONFIG",
},
}
},
{
"name": "get_playlistsplaylist_id",
"table_name": "playlist",
"endpoint": {
"path": "/playlists/{playlist_id}",
"params": {
"playlist_id": "FILL_ME_IN", # TODO: fill in required path parameter
# the parameters below can optionally be configured
# "secret_token": "OPTIONAL_CONFIG",
# "access": "playable,preview",
},
}
},
{
"name": "get_usersuser_idplaylists",
"table_name": "playlist",
"endpoint": {
"path": "/users/{user_id}/playlists",
"params": {
"user_id": "FILL_ME_IN", # TODO: fill in required path parameter
# the parameters below can optionally be configured
# "access": "playable,preview",
# "limit": "50",
# "linked_partitioning": "OPTIONAL_CONFIG",
},
}
},
{
"name": "get_trackstrack_idrelated",
"table_name": "related",
"endpoint": {
"path": "/tracks/{track_id}/related",
"params": {
"track_id": "FILL_ME_IN", # TODO: fill in required path parameter
# the parameters below can optionally be configured
# "access": "playable,preview",
# "linked_partitioning": "OPTIONAL_CONFIG",
},
}
},
{
"name": "get_playlistsplaylist_idreposters",
"table_name": "reposter",
"endpoint": {
"path": "/playlists/{playlist_id}/reposters",
"params": {
"playlist_id": "FILL_ME_IN", # TODO: fill in required path parameter
# the parameters below can optionally be configured
# "limit": "50",
},
}
},
{
"name": "get_trackstrack_idreposters",
"table_name": "reposter",
"endpoint": {
"path": "/tracks/{track_id}/reposters",
"params": {
"track_id": "FILL_ME_IN", # TODO: fill in required path parameter
# the parameters below can optionally be configured
# "limit": "50",
},
}
},
{
"name": "get_resolve",
"table_name": "resolve",
"endpoint": {
"path": "/resolve",
"params": {
"url": "FILL_ME_IN", # TODO: fill in required query parameter
},
}
},
{
"name": "get_trackstrack_idstreams",
"table_name": "stream",
"endpoint": {
"path": "/tracks/{track_id}/streams",
"params": {
"track_id": "FILL_ME_IN", # TODO: fill in required path parameter
# the parameters below can optionally be configured
# "secret_token": "OPTIONAL_CONFIG",
},
}
},
{
"name": "get_meactivitiestracks",
"table_name": "track",
"endpoint": {
"path": "/me/activities/tracks",
"params": {
# the parameters below can optionally be configured
# "access": "playable,preview",
# "limit": "50",
},
}
},
{
"name": "get_mefollowingstracks",
"table_name": "track",
"endpoint": {
"path": "/me/followings/tracks",
"params": {
# the parameters below can optionally be configured
# "access": "playable,preview",
},
}
},
{
"name": "get_melikestracks",
"table_name": "track",
"endpoint": {
"path": "/me/likes/tracks",
"params": {
# the parameters below can optionally be configured
# "limit": "50",
# "linked_partitioning": "OPTIONAL_CONFIG",
},
}
},
{
"name": "get_metracks",
"table_name": "track",
"endpoint": {
"path": "/me/tracks",
"params": {
# the parameters below can optionally be configured
# "limit": "50",
# "linked_partitioning": "OPTIONAL_CONFIG",
},
}
},
{
"name": "get_metrackstrack_id",
"table_name": "track",
"endpoint": {
"path": "/me/tracks/{track_id}",
"params": {
"track_id": "FILL_ME_IN", # TODO: fill in required path parameter
},
}
},
{
"name": "get_playlistsplaylist_idtracks",
"table_name": "track",
"endpoint": {
"path": "/playlists/{playlist_id}/tracks",
"params": {
"playlist_id": "FILL_ME_IN", # TODO: fill in required path parameter
# the parameters below can optionally be configured
# "secret_token": "OPTIONAL_CONFIG",
# "access": "playable,preview",
# "linked_partitioning": "OPTIONAL_CONFIG",
},
}
},
{
"name": "get_tracks",
"table_name": "track",
"endpoint": {
"path": "/tracks",
"params": {
"q": "FILL_ME_IN", # TODO: fill in required query parameter
# the parameters below can optionally be configured
# "ids": "OPTIONAL_CONFIG",
# "genres": "OPTIONAL_CONFIG",
# "tags": "OPTIONAL_CONFIG",
# "bpm": "OPTIONAL_CONFIG",
# "duration": "OPTIONAL_CONFIG",
# "created_at": "OPTIONAL_CONFIG",
# "access": "playable,preview",
# "linked_partitioning": "OPTIONAL_CONFIG",
},
}
},
{
"name": "get_trackstrack_id",
"table_name": "track",
"endpoint": {
"path": "/tracks/{track_id}",
"params": {
"track_id": "FILL_ME_IN", # TODO: fill in required path parameter
# the parameters below can optionally be configured
# "secret_token": "OPTIONAL_CONFIG",
},
}
},
{
"name": "get_usersuser_idlikestracks",
"table_name": "track",
"endpoint": {
"path": "/users/{user_id}/likes/tracks",
"params": {
"user_id": "FILL_ME_IN", # TODO: fill in required path parameter
# the parameters below can optionally be configured
# "access": "playable,preview",
# "limit": "50",
# "linked_partitioning": "OPTIONAL_CONFIG",
},
}
},
{
"name": "get_usersuser_idtracks",
"table_name": "track",
"endpoint": {
"path": "/users/{user_id}/tracks",
"params": {
"user_id": "FILL_ME_IN", # TODO: fill in required path parameter
# the parameters below can optionally be configured
# "access": "playable,preview",
# "limit": "50",
# "linked_partitioning": "OPTIONAL_CONFIG",
},
}
},
{
"name": "get_users",
"table_name": "user",
"endpoint": {
"path": "/users",
"params": {
"q": "FILL_ME_IN", # TODO: fill in required query parameter
# the parameters below can optionally be configured
# "ids": "OPTIONAL_CONFIG",
# "linked_partitioning": "OPTIONAL_CONFIG",
},
}
},
{
"name": "get_usersuser_id",
"table_name": "user",
"endpoint": {
"path": "/users/{user_id}",
"params": {
"user_id": "FILL_ME_IN", # TODO: fill in required path parameter
},
}
},
{
"name": "get_usersuser_idweb_profiles",
"table_name": "web_profile",
"endpoint": {
"path": "/users/{user_id}/web-profiles",
"params": {
"user_id": "FILL_ME_IN", # TODO: fill in required path parameter
# the parameters below can optionally be configured
# "limit": "50",
},
}
},
]
}
return rest_api_source(source_config)
2. Configuring your source and destination credentials
dlt-init-openapi
will try to detect which authentication mechanism (if any) is used by the API in question and add a placeholder in your secrets.toml
.
The dlt
cli will have created a .dlt
directory in your project folder. This directory contains a config.toml
file and a secrets.toml
file that you can use to configure your pipeline. The automatically created version of these files look like this:
generated config.toml
[runtime]
log_level="INFO"
[sources.soundcloud]
# Base URL for the API
base_url = "https://api.soundcloud.com"
generated secrets.toml
[sources.soundcloud]
# secrets for your soundcloud source
api_key = "FILL ME OUT" # TODO: fill in your credentials
2.1. Adjust the generated code to your usecase
At this time, the dlt-init-openapi
cli tool will always create pipelines that load to a local duckdb
instance. Switching to a different destination is trivial, all you need to do is change the destination
parameter in soundcloud_pipeline.py
to postgres and supply the credentials as outlined in the destination doc linked below.
3. Running your pipeline for the first time
The dlt
cli has also created a main pipeline script for you at soundcloud_pipeline.py
, as well as a folder soundcloud
that contains additional python files for your source. These files are your local copies which you can modify to fit your needs. In some cases you may find that you only need to do small changes to your pipelines or add some configurations, in other cases these files can serve as a working starting point for your code, but will need to be adjusted to do what you need them to do.
The main pipeline script will look something like this:
import dlt
from soundcloud import soundcloud_source
if __name__ == "__main__":
pipeline = dlt.pipeline(
pipeline_name="soundcloud_pipeline",
destination='duckdb',
dataset_name="soundcloud_data",
progress="log",
export_schema_path="schemas/export"
)
source = soundcloud_source()
info = pipeline.run(source)
print(info)
Provided you have set up your credentials, you can run your pipeline like a regular python script with the following command:
python soundcloud_pipeline.py
4. Inspecting your load result
You can now inspect the state of your pipeline with the dlt
cli:
dlt pipeline soundcloud_pipeline info
You can also use streamlit to inspect the contents of your Timescale
destination for this:
# install streamlit
pip install streamlit
# run the streamlit app for your pipeline with the dlt cli:
dlt pipeline soundcloud_pipeline show
5. Next steps to get your pipeline running in production
One of the beauties of dlt
is, that we are just a plain Python library, so you can run your pipeline in any environment that supports Python >= 3.8. We have a couple of helpers and guides in our docs to get you there:
The Deploy section will show you how to deploy your pipeline to
- Deploy with GitHub Actions: Learn how to set up and deploy your
dlt
pipeline using GitHub Actions for CI/CD. Read more - Deploy with Airflow: Follow this guide to deploy your
dlt
pipeline using Airflow and Google Composer. Read more - Deploy with Google Cloud Functions: Discover how to deploy your
dlt
pipeline using Google Cloud Functions. Read more - Explore Other Deployment Options: Check out additional methods for deploying your
dlt
pipeline. Read more
The running in production section will teach you about:
- How to Monitor your pipeline: Learn how to effectively monitor your
dlt
pipeline in production to ensure smooth operations and quick troubleshooting. How to Monitor your pipeline - Set up alerts: Configure alerts for your
dlt
pipeline to stay informed about any issues or important events that occur during the pipeline's execution. Set up alerts - Set up tracing: Implement tracing in your
dlt
pipeline to gain detailed insights into the pipeline's execution, helping you to diagnose and resolve issues efficiently. And set up tracing
Available Sources and Resources
For this verified source the following sources and resources are available
Source Soundcloud
Streams SoundCloud user activities, interactions, and track details.
Resource Name | Write Disposition | Description |
---|---|---|
favoriter | append | Users who have favorited a particular track |
own | append | Tracks uploaded by the authenticated user |
track | append | Individual audio tracks available on SoundCloud |
stream | append | Stream of activities related to the authenticated user |
me | append | Profile information of the authenticated user |
follower | append | Users who follow the authenticated user |
activity | append | Recent activities of the authenticated user |
connect | append | Connection requests related to the authenticated user |
connection | append | Established connections of the authenticated user |
favorite | append | Tracks favorited by the authenticated user |
reposter | append | Users who have reposted a particular track |
resolve | append | Resolves SoundCloud URLs to API resources |
id | append | Identifiers for various SoundCloud resources |
user | append | Profile information of any user on SoundCloud |
comment | append | Comments made on tracks |
playlist | append | Playlists created by users |
web_profile | append | External web profiles linked to a user's SoundCloud account |
related | append | Tracks related to a particular track |
following | append | Users that the authenticated user is following |
Additional pipeline guides
- Load data from PostgreSQL to Databricks in python with dlt
- Load data from Qualtrics to Redshift in python with dlt
- Load data from Chargebee to EDB BigAnimal in python with dlt
- Load data from Stripe to CockroachDB in python with dlt
- Load data from Chess.com to AWS Athena in python with dlt
- Load data from GitLab to BigQuery in python with dlt
- Load data from Oracle Database to AlloyDB in python with dlt
- Load data from Salesforce to Dremio in python with dlt
- Load data from DigitalOcean to DuckDB in python with dlt
- Load data from Keap to Microsoft SQL Server in python with dlt