Skip to main content

Load Google Analytics Data to Local Filesystem Using dlt in Python

Need help deploying these pipelines, or figuring out how to run them in your data stack?

Join our Slack community or book a call with our support engineer Violetta.

Google Analytics is a platform that collects data from your websites and apps to create reports that provide insights into your business. This documentation will guide you on how to load data from Google Analytics to The Local Filesystem using the open-source Python library dlt. The local filesystem destination stores data in a local folder, allowing you to easily create data lakes. You can store data as JSONL, Parquet, or CSV files. For more information about Google Analytics, visit Google Analytics.

dlt Key Features

  • Pipeline Metadata: dlt pipelines leverage metadata to provide governance capabilities, including load IDs for tracking data loads and facilitating data lineage. Read more

  • Schema Enforcement and Curation: dlt empowers users to enforce and curate schemas, ensuring data consistency and quality by adhering to predefined schemas. Learn more

  • Scalability via Iterators, Chunking, and Parallelization: dlt offers scalable data extraction by leveraging iterators, chunking, and parallelization techniques, allowing efficient processing of large datasets. Discover how

  • Schema Evolution: dlt enables proactive governance by alerting users to schema changes, allowing them to review and validate changes, update downstream processes, or perform impact analysis. Explore more

  • Telemetry: dlt collects and reports anonymous usage information to help improve the library, with options to disable telemetry or send it to your own servers. Find out more

Getting started with your pipeline locally

0. Prerequisites

dlt requires Python 3.8 or higher. Additionally, you need to have the pip package manager installed, and we recommend using a virtual environment to manage your dependencies. You can learn more about preparing your computer for dlt in our installation reference.

1. Install dlt

First you need to install the dlt library with the correct extras for The Local Filesystem:

pip install "dlt[filesystem]"

The dlt cli has a useful command to get you started with any combination of source and destination. For this example, we want to load data from Google Analytics to The Local Filesystem. You can run the following commands to create a starting point for loading data from Google Analytics to The Local Filesystem:

# create a new directory
mkdir google_analytics_pipeline
cd google_analytics_pipeline
# initialize a new pipeline with your source and destination
dlt init google_analytics filesystem
# install the required dependencies
pip install -r requirements.txt

The last command will install the required dependencies for your pipeline. The dependencies are listed in the requirements.txt:


google-analytics-data
google-api-python-client
google-auth-oauthlib
requests_oauthlib
dlt[filesystem]>=0.3.25

You now have the following folder structure in your project:

google_analytics_pipeline/
├── .dlt/
│ ├── config.toml # configs for your pipeline
│ └── secrets.toml # secrets for your pipeline
├── google_analytics/ # folder with source specific files
│ └── ...
├── google_analytics_pipeline.py # your main pipeline script
├── requirements.txt # dependencies for your pipeline
└── .gitignore # ignore files for git (not required)

2. Configuring your source and destination credentials

The dlt cli will have created a .dlt directory in your project folder. This directory contains a config.toml file and a secrets.toml file that you can use to configure your pipeline. The automatically created version of these files look like this:

generated config.toml

# put your configuration values here

[runtime]
log_level="WARNING" # the system log level of dlt
# use the dlthub_telemetry setting to enable/disable anonymous usage data reporting, see https://dlthub.com/docs/telemetry
dlthub_telemetry = true

[sources.google_analytics]
property_id = 0 # please set me up!
queries =
["a", "b", "c"] # please set me up!

generated secrets.toml

# put your secret values and credentials here. do not share this file and do not push it to github

[sources.google_analytics.credentials]
client_id = "client_id" # please set me up!
client_secret = "client_secret" # please set me up!
refresh_token = "refresh_token" # please set me up!
project_id = "project_id" # please set me up!

[destination.filesystem]
dataset_name = "dataset_name" # please set me up!
bucket_url = "bucket_url" # please set me up!

[destination.filesystem.credentials]
aws_access_key_id = "aws_access_key_id" # please set me up!
aws_secret_access_key = "aws_secret_access_key" # please set me up!

2.1. Adjust the generated code to your usecase

Further help setting up your source and destinations
  • Read more about setting up the Google Analytics source in our docs.
  • Read more about setting up the The Local Filesystem destination in our docs.

The default filesystem destination is configured to connect to AWS S3. To load to a local directory, remove the [destination.filesystem.credentials] section from your secrets.toml and provide a local filepath as the bucket_url.

[destination.filesystem] # in ./dlt/secrets.toml
bucket_url="file://path/to/my/output"

By default, the filesystem destination will store your files as JSONL. You can tell your pipeline to choose a different format with the loader_file_format property that you can set directly on the pipeline or via your config.toml. Available values are jsonl, parquet and csv:

[pipeline] # in ./dlt/config.toml
loader_file_format="parquet"

3. Running your pipeline for the first time

The dlt cli has also created a main pipeline script for you at google_analytics_pipeline.py, as well as a folder google_analytics that contains additional python files for your source. These files are your local copies which you can modify to fit your needs. In some cases you may find that you only need to do small changes to your pipelines or add some configurations, in other cases these files can serve as a working starting point for your code, but will need to be adjusted to do what you need them to do.

The main pipeline script will look something like this:


""" Loads the pipeline for Google Analytics V4. """

import time
from typing import Any

import dlt

from google_analytics import google_analytics

# this can also be filled in config.toml and be left empty as a parameter.
QUERIES = [
{
"resource_name": "sample_analytics_data1",
"dimensions": ["browser", "city"],
"metrics": ["totalUsers", "transactions"],
},
{
"resource_name": "sample_analytics_data2",
"dimensions": ["browser", "city", "dateHour"],
"metrics": ["totalUsers"],
},
]


def simple_load() -> Any:
"""
Just loads the data normally. Incremental loading for this pipeline is on,
the last load time is saved in dlt_state, and the next load of the pipeline will have the last load as a starting date.

Returns:
Load info on the pipeline that has been run.
"""
# FULL PIPELINE RUN
pipeline = dlt.pipeline(
pipeline_name="dlt_google_analytics_pipeline",
destination='filesystem',
full_refresh=False,
dataset_name="sample_analytics_data",
)
# Google Analytics source function - taking data from QUERIES defined locally instead of config
# TODO: pass your google analytics property id as google_analytics(property_id=123,..)
data_analytics = google_analytics(queries=QUERIES)
info = pipeline.run(data=data_analytics)
print(info)
return info


def simple_load_config() -> Any:
"""
Just loads the data normally. QUERIES are taken from config. Incremental loading for this pipeline is on,
the last load time is saved in dlt_state, and the next load of the pipeline will have the last load as a starting date.

Returns:
Load info on the pipeline that has been run.
"""
# FULL PIPELINE RUN
pipeline = dlt.pipeline(
pipeline_name="dlt_google_analytics_pipeline",
destination='filesystem',
full_refresh=False,
dataset_name="sample_analytics_data",
)
# Google Analytics source function - taking data from QUERIES defined locally instead of config
data_analytics = google_analytics()
info = pipeline.run(data=data_analytics)
print(info)
return info


def chose_date_first_load(start_date: str = "2000-01-01") -> Any:
"""
Chooses the starting date for the first pipeline load. Subsequent loads of the pipeline will be from the last loaded date.

Args:
start_date: The string version of the date in the format yyyy-mm-dd and some other values.
More info: https://developers.google.com/analytics/devguides/reporting/data/v1/rest/v1beta/DateRange

Returns:
Load info on the pipeline that has been run.
"""
# FULL PIPELINE RUN
pipeline = dlt.pipeline(
pipeline_name="dlt_google_analytics_pipeline",
destination='filesystem',
full_refresh=False,
dataset_name="sample_analytics_data",
)
# Google Analytics source function
data_analytics = google_analytics(start_date=start_date)
info = pipeline.run(data=data_analytics)
print(info)
return info


if __name__ == "__main__":
start_time = time.time()
simple_load()
end_time = time.time()
print(f"Time taken: {end_time-start_time}")

Provided you have set up your credentials, you can run your pipeline like a regular python script with the following command:

python google_analytics_pipeline.py

4. Inspecting your load result

You can now inspect the state of your pipeline with the dlt cli:

dlt pipeline dlt_google_analytics_pipeline info

You can also use streamlit to inspect the contents of your The Local Filesystem destination for this:

# install streamlit
pip install streamlit
# run the streamlit app for your pipeline with the dlt cli:
dlt pipeline dlt_google_analytics_pipeline show

5. Next steps to get your pipeline running in production

One of the beauties of dlt is, that we are just a plain Python library, so you can run your pipeline in any environment that supports Python >= 3.8. We have a couple of helpers and guides in our docs to get you there:

The Deploy section will show you how to deploy your pipeline to

The running in production section will teach you about:

  • How to Monitor your pipeline: Learn how to effectively monitor your dlt pipeline in production to ensure smooth and error-free operation. Check out the detailed guide here.
  • Set up alerts: Setting up alerts can help you stay informed about the status of your pipeline and quickly respond to any issues. Find out how to configure alerts here.
  • Set up tracing: Tracing allows you to capture detailed runtime information about your pipeline, which is crucial for debugging and performance optimization. Learn more about setting up tracing here.

Additional pipeline guides

This demo works on codespaces. Codespaces is a development environment available for free to anyone with a Github account. You'll be asked to fork the demo repository and from there the README guides you with further steps.
The demo uses the Continue VSCode extension.

Off to codespaces!

DHelp

Ask a question

Welcome to "Codex Central", your next-gen help center, driven by OpenAI's GPT-4 model. It's more than just a forum or a FAQ hub – it's a dynamic knowledge base where coders can find AI-assisted solutions to their pressing problems. With GPT-4's powerful comprehension and predictive abilities, Codex Central provides instantaneous issue resolution, insightful debugging, and personalized guidance. Get your code running smoothly with the unparalleled support at Codex Central - coding help reimagined with AI prowess.