Skip to main content

Python dlt Library: Loading Google Analytics Data to ClickHouse

Need help deploying these pipelines, or figuring out how to run them in your data stack?

Join our Slack community or book a call with our support engineer Violetta.

This page provides technical documentation on how to load data from Google Analytics into ClickHouse using the open-source Python library, dlt. Google Analytics is a comprehensive platform that gathers data from your websites and apps, generating insightful business reports. On the other hand, ClickHouse is a swift, open-source, column-oriented database management system that enables real-time analytical data report generation through SQL queries. By utilizing dlt, you can effectively transfer your Google Analytics data into the ClickHouse system for further analysis. More details about Google Analytics can be found at https://analytics.google.com.

dlt Key Features

  • Automated maintenance: With features like schema inference and evolution, and alerts, maintaining your data pipelines becomes a breeze. Short, declarative code ensures you spend less time troubleshooting and more time analyzing your data. Learn more here.

  • Run it anywhere: dlt is incredibly versatile and can be run wherever Python is supported. This includes platforms like Airflow, serverless functions, and notebooks. There are no external APIs, backends, or containers required, making it scalable for both micro and large infrastructures. Check out the Scaling and finetuning section for more details.

  • User-friendly interface: dlt is designed to be accessible to beginners while still providing powerful features for senior professionals. The declarative interface removes knowledge obstacles and empowers users to build and manage data pipelines effectively. Get started with dlt here.

  • Robust governance support: dlt pipelines offer strong governance support through pipeline metadata utilization, schema enforcement and curation, and schema change alerts. These features contribute to better data management practices, compliance adherence, and overall data governance. Read more about it here.

  • Data extraction made easy: Extracting data with dlt is simple and efficient. It leverages iterators, chunking, and parallelization for scalability, and utilizes implicit extraction Directed Acyclic Graphs (DAGs) for efficient API calls for data enrichments or transformations. Learn more about data extraction with dlt here.

Getting started with your pipeline locally

0. Prerequisites

dlt requires Python 3.8 or higher. Additionally, you need to have the pip package manager installed, and we recommend using a virtual environment to manage your dependencies. You can learn more about preparing your computer for dlt in our installation reference.

1. Install dlt

First you need to install the dlt library with the correct extras for ClickHouse:

pip install "dlt[clickhouse]"

The dlt cli has a useful command to get you started with any combination of source and destination. For this example, we want to load data from Google Analytics to ClickHouse. You can run the following commands to create a starting point for loading data from Google Analytics to ClickHouse:

# create a new directory
mkdir google_analytics_pipeline
cd google_analytics_pipeline
# initialize a new pipeline with your source and destination
dlt init google_analytics clickhouse
# install the required dependencies
pip install -r requirements.txt

The last command will install the required dependencies for your pipeline. The dependencies are listed in the requirements.txt:


google-analytics-data
google-api-python-client
google-auth-oauthlib
requests_oauthlib
dlt[clickhouse]>=0.3.25

You now have the following folder structure in your project:

google_analytics_pipeline/
├── .dlt/
│ ├── config.toml # configs for your pipeline
│ └── secrets.toml # secrets for your pipeline
├── google_analytics/ # folder with source specific files
│ └── ...
├── google_analytics_pipeline.py # your main pipeline script
├── requirements.txt # dependencies for your pipeline
└── .gitignore # ignore files for git (not required)

2. Configuring your source and destination credentials

The dlt cli will have created a .dlt directory in your project folder. This directory contains a config.toml file and a secrets.toml file that you can use to configure your pipeline. The automatically created version of these files look like this:

generated config.toml

# put your configuration values here

[runtime]
log_level="WARNING" # the system log level of dlt
# use the dlthub_telemetry setting to enable/disable anonymous usage data reporting, see https://dlthub.com/docs/telemetry
dlthub_telemetry = true

[sources.google_analytics]
property_id = 0 # please set me up!
queries =
["a", "b", "c"] # please set me up!

generated secrets.toml

# put your secret values and credentials here. do not share this file and do not push it to github

[sources.google_analytics.credentials]
client_id = "client_id" # please set me up!
client_secret = "client_secret" # please set me up!
refresh_token = "refresh_token" # please set me up!
project_id = "project_id" # please set me up!

[destination.clickhouse]
dataset_name = "dataset_name" # please set me up!

[destination.clickhouse.credentials]
database = "default"
password = "password" # please set me up!
username = "default"
host = "host" # please set me up!
port = 9440
http_port = 8443

2.1. Adjust the generated code to your usecase

Further help setting up your source and destinations
  • Read more about setting up the Google Analytics source in our docs.
  • Read more about setting up the ClickHouse destination in our docs.

3. Running your pipeline for the first time

The dlt cli has also created a main pipeline script for you at google_analytics_pipeline.py, as well as a folder google_analytics that contains additional python files for your source. These files are your local copies which you can modify to fit your needs. In some cases you may find that you only need to do small changes to your pipelines or add some configurations, in other cases these files can serve as a working starting point for your code, but will need to be adjusted to do what you need them to do.

The main pipeline script will look something like this:


""" Loads the pipeline for Google Analytics V4. """

import time
from typing import Any

import dlt

from google_analytics import google_analytics

# this can also be filled in config.toml and be left empty as a parameter.
QUERIES = [
{
"resource_name": "sample_analytics_data1",
"dimensions": ["browser", "city"],
"metrics": ["totalUsers", "transactions"],
},
{
"resource_name": "sample_analytics_data2",
"dimensions": ["browser", "city", "dateHour"],
"metrics": ["totalUsers"],
},
]


def simple_load() -> Any:
"""
Just loads the data normally. Incremental loading for this pipeline is on,
the last load time is saved in dlt_state, and the next load of the pipeline will have the last load as a starting date.

Returns:
Load info on the pipeline that has been run.
"""
# FULL PIPELINE RUN
pipeline = dlt.pipeline(
pipeline_name="dlt_google_analytics_pipeline",
destination='clickhouse',
full_refresh=False,
dataset_name="sample_analytics_data",
)
# Google Analytics source function - taking data from QUERIES defined locally instead of config
# TODO: pass your google analytics property id as google_analytics(property_id=123,..)
data_analytics = google_analytics(queries=QUERIES)
info = pipeline.run(data=data_analytics)
print(info)
return info


def simple_load_config() -> Any:
"""
Just loads the data normally. QUERIES are taken from config. Incremental loading for this pipeline is on,
the last load time is saved in dlt_state, and the next load of the pipeline will have the last load as a starting date.

Returns:
Load info on the pipeline that has been run.
"""
# FULL PIPELINE RUN
pipeline = dlt.pipeline(
pipeline_name="dlt_google_analytics_pipeline",
destination='clickhouse',
full_refresh=False,
dataset_name="sample_analytics_data",
)
# Google Analytics source function - taking data from QUERIES defined locally instead of config
data_analytics = google_analytics()
info = pipeline.run(data=data_analytics)
print(info)
return info


def chose_date_first_load(start_date: str = "2000-01-01") -> Any:
"""
Chooses the starting date for the first pipeline load. Subsequent loads of the pipeline will be from the last loaded date.

Args:
start_date: The string version of the date in the format yyyy-mm-dd and some other values.
More info: https://developers.google.com/analytics/devguides/reporting/data/v1/rest/v1beta/DateRange

Returns:
Load info on the pipeline that has been run.
"""
# FULL PIPELINE RUN
pipeline = dlt.pipeline(
pipeline_name="dlt_google_analytics_pipeline",
destination='clickhouse',
full_refresh=False,
dataset_name="sample_analytics_data",
)
# Google Analytics source function
data_analytics = google_analytics(start_date=start_date)
info = pipeline.run(data=data_analytics)
print(info)
return info


if __name__ == "__main__":
start_time = time.time()
simple_load()
end_time = time.time()
print(f"Time taken: {end_time-start_time}")

Provided you have set up your credentials, you can run your pipeline like a regular python script with the following command:

python google_analytics_pipeline.py

4. Inspecting your load result

You can now inspect the state of your pipeline with the dlt cli:

dlt pipeline dlt_google_analytics_pipeline info

You can also use streamlit to inspect the contents of your ClickHouse destination for this:

# install streamlit
pip install streamlit
# run the streamlit app for your pipeline with the dlt cli:
dlt pipeline dlt_google_analytics_pipeline show

5. Next steps to get your pipeline running in production

One of the beauties of dlt is, that we are just a plain Python library, so you can run your pipeline in any environment that supports Python >= 3.8. We have a couple of helpers and guides in our docs to get you there:

The Deploy section will show you how to deploy your pipeline to

  • Deploy with Github Actions: dlt supports deployment through Github Actions. By using this feature, you can automate your pipeline workflow and ensure regular data updates.
  • Deploy with Airflow: You can deploy your dlt pipeline using Airflow. This tool helps manage complex workflows and tasks, making it easier to maintain and monitor your pipelines.
  • Deploy with Google Cloud Functions: With dlt, you can deploy your pipeline on Google Cloud Functions. This serverless execution environment allows you to build and connect cloud services with code.
  • Other Deployment Options: dlt provides a variety of other deployment options to suit your needs. Find out more about these options here.

The running in production section will teach you about:

  • Monitor Your Pipeline: dlt provides robust monitoring capabilities to keep track of your pipeline's performance and health. This feature allows you to identify and resolve issues promptly, ensuring smooth pipeline operations. Check out the guide on how to monitor your pipeline.
  • Set Up Alerts: With dlt, you can set up alerts to notify you of any critical changes or issues in your pipeline. This proactive approach helps you stay on top of any potential problems and address them before they escalate. Learn more about setting up alerts.
  • Enable Tracing: Tracing is a powerful feature in dlt that provides detailed insights into your pipeline's execution. It allows you to track the flow of data and operations in your pipeline, making it easier to debug and optimize your processes. Here's how to set up tracing.

Additional pipeline guides

This demo works on codespaces. Codespaces is a development environment available for free to anyone with a Github account. You'll be asked to fork the demo repository and from there the README guides you with further steps.
The demo uses the Continue VSCode extension.

Off to codespaces!

DHelp

Ask a question

Welcome to "Codex Central", your next-gen help center, driven by OpenAI's GPT-4 model. It's more than just a forum or a FAQ hub – it's a dynamic knowledge base where coders can find AI-assisted solutions to their pressing problems. With GPT-4's powerful comprehension and predictive abilities, Codex Central provides instantaneous issue resolution, insightful debugging, and personalized guidance. Get your code running smoothly with the unparalleled support at Codex Central - coding help reimagined with AI prowess.