Loading Data from airtable
to azure synapse
using Python dlt
Library
Join our Slack community or book a call with our support engineer Violetta.
This page provides technical documentation on how to load data from airtable
, a cloud-based platform that combines spreadsheet and database functionalities, to azure synapse
, an expansive analytics service that unifies enterprise data warehousing and Big Data analytics. The process is facilitated through the use of an open-source Python library, dlt
. Additional information about airtable
can be found at https://www.airtable.com/. The goal is to enable easy data management and collaboration through the effective use of dlt
, airtable
, and azure synapse
.
dlt
Key Features
- Automated maintenance: With features like schema inference, evolution, and alerts,
dlt
simplifies maintenance tasks. It allows you to write short, declarative code, making maintenance straightforward. Learn more - Runs wherever Python does:
dlt
can be run on Airflow, serverless functions, notebooks, and more. It doesn't require any external APIs, backends, or containers, and can scale on both micro and large infrastructures. Learn more - Robust governance support:
dlt
pipelines offer strong governance support through pipeline metadata utilization, schema enforcement and curation, and schema change alerts. This ensures data consistency, traceability, and control throughout the data processing lifecycle. Learn more - Flexible and scalable:
dlt
provides several mechanisms and configuration options to scale up and fine-tune pipelines. It supports running extraction, normalization, and load in parallel and offers options for memory buffers, intermediary file sizes, and compression. Learn more - Supports a variety of destinations:
dlt
supports a wide range of destinations including Synapse and DuckDB, allowing you to choose the one that best suits your needs. Learn more about Synapse and Learn more about DuckDB
Getting started with your pipeline locally
0. Prerequisites
dlt
requires Python 3.8 or higher. Additionally, you need to have the pip
package manager installed, and we recommend using a virtual environment to manage your dependencies. You can learn more about preparing your computer for dlt in our installation reference.
1. Install dlt
First you need to install the dlt
library with the correct extras for Azure Synapse
:
pip install "dlt[synapse]"
The dlt
cli has a useful command to get you started with any combination of source and destination. For this example, we want to load data from Airtable
to Azure Synapse
. You can run the following commands to create a starting point for loading data from Airtable
to Azure Synapse
:
# create a new directory
mkdir airtable_pipeline
cd airtable_pipeline
# initialize a new pipeline with your source and destination
dlt init airtable synapse
# install the required dependencies
pip install -r requirements.txt
The last command will install the required dependencies for your pipeline. The dependencies are listed in the requirements.txt
:
pyairtable~=2.1
dlt[synapse]>=0.3.25
You now have the following folder structure in your project:
airtable_pipeline/
├── .dlt/
│ ├── config.toml # configs for your pipeline
│ └── secrets.toml # secrets for your pipeline
├── airtable/ # folder with source specific files
│ └── ...
├── airtable_pipeline.py # your main pipeline script
├── requirements.txt # dependencies for your pipeline
└── .gitignore # ignore files for git (not required)
2. Configuring your source and destination credentials
The dlt
cli will have created a .dlt
directory in your project folder. This directory contains a config.toml
file and a secrets.toml
file that you can use to configure your pipeline. The automatically created version of these files look like this:
generated config.toml
# put your configuration values here
[runtime]
log_level="WARNING" # the system log level of dlt
# use the dlthub_telemetry setting to enable/disable anonymous usage data reporting, see https://dlthub.com/docs/telemetry
dlthub_telemetry = true
[sources.airtable]
base_id = "base_id" # please set me up!
generated secrets.toml
# put your secret values and credentials here. do not share this file and do not push it to github
[sources.airtable]
access_token = "access_token" # please set me up!
[destination.synapse]
create_indexes = false
default_table_index_type = "heap"
staging_use_msi = false
[destination.synapse.credentials]
database = "database" # please set me up!
password = "password" # please set me up!
username = "username" # please set me up!
host = "host" # please set me up!
port = 1433
connect_timeout = 15
driver = "driver" # please set me up!
2.1. Adjust the generated code to your usecase
3. Running your pipeline for the first time
The dlt
cli has also created a main pipeline script for you at airtable_pipeline.py
, as well as a folder airtable
that contains additional python files for your source. These files are your local copies which you can modify to fit your needs. In some cases you may find that you only need to do small changes to your pipelines or add some configurations, in other cases these files can serve as a working starting point for your code, but will need to be adjusted to do what you need them to do.
The main pipeline script will look something like this:
from typing import List, Dict, Any
import dlt
from airtable import airtable_source
def load_entire_base(base_id: str, resources_to_apply_hints: Dict[str, Any]) -> None:
"""
Loads all tables from the specified Airtable base.
Args:
base_id (str): The id of the base. Obtain it, e.g. from the URL in your web browser.
It starts with "app". See https://support.airtable.com/docs/finding-airtable-ids
resources_to_apply_hints (dict): Dict of table names and fields we want to apply hints.
Note:
- The base_id can either be passed directly or set up in ".dlt/config.toml".
"""
# configure the pipeline with your destination details
pipeline = dlt.pipeline(
pipeline_name="airtable", destination='synapse', dataset_name="airtable_data"
)
# Retrieve data from Airtable using airtable_source.
airtables = airtable_source(base_id=base_id)
# typing columns to silence warnings
for resource_name, field_names in resources_to_apply_hints.items():
for field_name in field_names:
airtables.resources[resource_name].apply_hints(
columns={field_name: {"name": field_name, "data_type": "text"}}
)
load_info = pipeline.run(airtables, write_disposition="replace")
print(load_info)
def load_select_tables_from_base_by_id(base_id: str, table_names: List[str]) -> None:
"""
Load specific table IDs from Airtable to a data pipeline.
Args:
base_id (str): The id of the base. Obtain it, e.g. from the URL in your web browser.
It starts with "app". See https://support.airtable.com/docs/finding-airtable-ids
table_names (List[str]): A list of table IDs or table names to load. Unless specified otherwise,
all tables in the schema are loaded. Names are freely user-defined. IDs start with "tbl".
See https://support.airtable.com/docs/finding-airtable-ids
resources_to_apply_hints (dict): Dict of table names and fields we want to apply hints.
Note:
- Filtering by names is less reliable than filtering on IDs because names can be changed by Airtable users.
- Example in this Airtable URL: https://airtable.com/app7RlqvdoOmJm9XR/tblKHM5s3AujfSbAH
- Table ID: "tblKHM5s3AujfSbAH"
- The base_id and table_names can either be passed directly or set up in ".dlt/config.toml".
"""
# configure the pipeline with your destination details
pipeline = dlt.pipeline(
pipeline_name="airtable", destination='synapse', dataset_name="airtable_data"
)
airtables = airtable_source(
base_id=base_id,
table_names=table_names,
)
load_info = pipeline.run(airtables, write_disposition="replace")
print(load_info)
def load_select_tables_from_base_by_name(
base_id: str, table_names: List[str], resources_to_apply_hints: Dict[str, Any]
) -> None:
"""
Loads specific table names from an Airtable base.
Args:
base_id (str): The id of the base. Obtain it, e.g. from the URL in your web browser.
It starts with "app". See https://support.airtable.com/docs/finding-airtable-ids
table_names (List[str]): A list of table IDs or table names to load. Unless specified otherwise,
all tables in the schema are loaded. Names are freely user-defined. IDs start with "tbl".
See https://support.airtable.com/docs/finding-airtable-idss
resources_to_apply_hints (dict): Dict of table names and fields we want to apply hints.
Note:
- Filtering by names is less reliable than filtering on IDs because names can be changed by Airtable users.
- Example in this Airtable URL: https://airtable.com/app7RlqvdoOmJm9XR/tblKHM5s3AujfSbAH
- Table ID: "tblKHM5s3AujfSbAH"
- The base_id and table_names can either be passed directly or set up in ".dlt/config.toml".
"""
pipeline = dlt.pipeline(
pipeline_name="airtable", destination='synapse', dataset_name="airtable_data"
)
airtables = airtable_source(
base_id=base_id,
table_names=table_names,
)
# typing columns to silence warnings
for resource_name, field_names in resources_to_apply_hints.items():
for field_name in field_names:
airtables.resources[resource_name].apply_hints(
columns={field_name: {"name": field_name, "data_type": "text"}}
)
load_info = pipeline.run(airtables, write_disposition="replace")
print(load_info)
def load_and_customize_write_disposition(
base_id: str, table_names: List[str], resources_to_apply_hints: Dict[str, Any]
) -> None:
"""
Loads data from a specific Airtable base's table with customized write disposition("merge") using field_name.
Args:
base_id (str): The id of the base. Obtain it, e.g. from the URL in your web browser.
It starts with "app". See https://support.airtable.com/docs/finding-airtable-ids
table_names (List[str]): A list of table IDs or table names to load. Unless specified otherwise,
all tables in the schema are loaded. Names are freely user-defined. IDs start with "tbl".
See https://support.airtable.com/docs/finding-airtable-ids
resources_to_apply_hints (dict): Dict of table names and fields we want to apply hints.
Note:
- Filtering by names is less reliable than filtering on IDs because names can be changed by Airtable users.
- Example in this Airtable URL: https://airtable.com/app7RlqvdoOmJm9XR/tblKHM5s3AujfSbAH
- Table ID: "tblKHM5s3AujfSbAH"
- The base_id and table_names can either be passed directly or set up in ".dlt/config.toml".
"""
pipeline = dlt.pipeline(
pipeline_name="airtable", destination='synapse', dataset_name="airtable_data"
)
airtables = airtable_source(
base_id=base_id,
table_names=table_names,
)
# typing columns to silence warnings
for resource_name, field_names in resources_to_apply_hints.items():
for field_name in field_names:
airtables.resources[resource_name].apply_hints(
primary_key=field_name,
columns={field_name: {"name": field_name, "data_type": "text"}},
write_disposition="merge",
)
load_info = pipeline.run(airtables)
print(load_info)
if __name__ == "__main__":
load_entire_base(
base_id="app7RlqvdoOmJm9XR",
resources_to_apply_hints={
"🎤 Speakers": ["Name"],
"📆 Schedule": ["Activity"],
"🪑 Attendees": ["Name"],
"💰 Budget": ["Item"],
},
)
load_select_tables_from_base_by_id(
base_id="app7RlqvdoOmJm9XR",
table_names=["tblKHM5s3AujfSbAH", "tbloBrS8PnoO63aMP"],
)
load_select_tables_from_base_by_name(
"app7RlqvdoOmJm9XR",
table_names=["💰 Budget"],
resources_to_apply_hints={"💰 Budget": ["Item"]},
)
load_and_customize_write_disposition(
base_id="appcChDyP0pZeC76v",
table_names=["tbl1sN4CpPv8pBll4"],
resources_to_apply_hints={"Sheet1": ["Name"]},
)
Provided you have set up your credentials, you can run your pipeline like a regular python script with the following command:
python airtable_pipeline.py
4. Inspecting your load result
You can now inspect the state of your pipeline with the dlt
cli:
dlt pipeline airtable info
You can also use streamlit to inspect the contents of your Azure Synapse
destination for this:
# install streamlit
pip install streamlit
# run the streamlit app for your pipeline with the dlt cli:
dlt pipeline airtable show
5. Next steps to get your pipeline running in production
One of the beauties of dlt
is, that we are just a plain Python library, so you can run your pipeline in any environment that supports Python >= 3.8. We have a couple of helpers and guides in our docs to get you there:
The Deploy section will show you how to deploy your pipeline to
- Deploy with Github Actions:
dlt
provides you with a command-line tool to deploy your pipeline using Github Actions. You can set your deployment schedule using a cron schedule expression. - Deploy with Airflow and Google Composer: With
dlt
, you can also deploy your pipeline using Airflow and Google Composer. This method provides a managed Airflow environment. - Deploy with Google Cloud Functions:
dlt
allows for deployment using Google Cloud Functions. This serverless execution environment allows your code to be run in response to events without the need for server management. - Other Deployment Methods:
dlt
supports a variety of deployment methods. You can find more information on these methods in the deployment documentation.
The running in production section will teach you about:
- Monitor your pipeline:
dlt
provides a range of tools to help you monitor your pipeline, ensuring it's running smoothly and efficiently. You can find more information on how to do this here. - Set up alerts: Stay updated with the status of your pipeline by setting up alerts. This allows you to be notified of any changes or issues with your pipeline as they occur. Learn how to set up alerts here.
- Set up tracing: Tracing allows you to keep track of your pipeline's performance and identify any potential bottlenecks or issues. Find out how to set up tracing here.
Additional pipeline guides
- Load data from Aladtec to Microsoft SQL Server in python with dlt
- Load data from Google Analytics to Timescale in python with dlt
- Load data from Chess.com to CockroachDB in python with dlt
- Load data from Microsoft SQL Server to Microsoft SQL Server in python with dlt
- Load data from Braze to DuckDB in python with dlt
- Load data from SAP HANA to Dremio in python with dlt
- Load data from Shopify to YugabyteDB in python with dlt
- Load data from Vimeo to Azure Cloud Storage in python with dlt
- Load data from Sentry to AWS S3 in python with dlt
- Load data from Jira to ClickHouse in python with dlt