Stripe Data Loading to Azure Storage via Python's dlt
Library
Join our Slack community or book a call with our support engineer Violetta.
The dlt
library is a powerful open-source Python tool that simplifies data integration. This technical documentation focuses on using dlt
to load data from Stripe
, a comprehensive payments platform, into Azure Cloud Storage
, a robust data storage service provided by Microsoft. Stripe
makes it easy to handle payments in over 135 currencies with simple APIs and transparent pricing. On the other hand, Azure Cloud Storage
allows for the creation of data lakes and supports the upload of data in JSONL, Parquet, or CSV formats. By leveraging the capabilities of dlt
, you can streamline the process of transferring data from Stripe
to Azure Cloud Storage
. For more details about Stripe
, visit https://stripe.com.
dlt
Key Features
- Robust Governance Support:
dlt
pipelines offer robust governance support through three key mechanisms: pipeline metadata utilization, schema enforcement and curation, and schema change alerts. Read more about it here. - Scalability and Finetuning:
dlt
offers several mechanisms and configuration options to scale up and finetune pipelines, including running extraction, normalization and load in parallel, and finetuning the memory buffers, intermediary file sizes and compression options. Learn more here. - Advanced Data Extraction:
dlt
makes data extraction simple and efficient by leveraging iterators, chunking, and parallelization techniques, as well as utilizing implicit extraction DAGs. Find out more here. - Filesystem & Buckets Support:
dlt
supports storing data in remote file systems and bucket storages like S3, Google Storage, or Azure Blob Storage. It usesfsspec
to abstract file operations. Read more about it here. - Support for Multiple Sources:
dlt
can access various bucket types, including AWS S3, Google Cloud Storage, Azure Blob Storage, and Local Storage. It provides a detailed setup guide for grabbing credentials and initializing the verified source. Check out the guide here.
Getting started with your pipeline locally
0. Prerequisites
dlt
requires Python 3.8 or higher. Additionally, you need to have the pip
package manager installed, and we recommend using a virtual environment to manage your dependencies. You can learn more about preparing your computer for dlt in our installation reference.
1. Install dlt
First you need to install the dlt
library with the correct extras for Azure Cloud Storage
:
pip install "dlt[filesystem]"
The dlt
cli has a useful command to get you started with any combination of source and destination. For this example, we want to load data from Stripe
to Azure Cloud Storage
. You can run the following commands to create a starting point for loading data from Stripe
to Azure Cloud Storage
:
# create a new directory
mkdir stripe_analytics_pipeline
cd stripe_analytics_pipeline
# initialize a new pipeline with your source and destination
dlt init stripe_analytics filesystem
# install the required dependencies
pip install -r requirements.txt
The last command will install the required dependencies for your pipeline. The dependencies are listed in the requirements.txt
:
pandas>=2.0.0
stripe>=5.0.0
dlt[filesystem]>=0.3.5
You now have the following folder structure in your project:
stripe_analytics_pipeline/
├── .dlt/
│ ├── config.toml # configs for your pipeline
│ └── secrets.toml # secrets for your pipeline
├── stripe_analytics/ # folder with source specific files
│ └── ...
├── stripe_analytics_pipeline.py # your main pipeline script
├── requirements.txt # dependencies for your pipeline
└── .gitignore # ignore files for git (not required)
2. Configuring your source and destination credentials
The dlt
cli will have created a .dlt
directory in your project folder. This directory contains a config.toml
file and a secrets.toml
file that you can use to configure your pipeline. The automatically created version of these files look like this:
generated config.toml
# put your configuration values here
[runtime]
log_level="WARNING" # the system log level of dlt
# use the dlthub_telemetry setting to enable/disable anonymous usage data reporting, see https://dlthub.com/docs/telemetry
dlthub_telemetry = true
generated secrets.toml
# put your secret values and credentials here. do not share this file and do not push it to github
[sources.stripe_analytics]
stripe_secret_key = "stripe_secret_key" # please set me up!
[destination.filesystem]
dataset_name = "dataset_name" # please set me up!
bucket_url = "bucket_url" # please set me up!
[destination.filesystem.credentials]
aws_access_key_id = "aws_access_key_id" # please set me up!
aws_secret_access_key = "aws_secret_access_key" # please set me up!
2.1. Adjust the generated code to your usecase
The default filesystem destination is configured to connect to AWS S3. To load to Azure Cloud Storage, update the [destination.filesystem.credentials]
section in your secrets.toml
.
[destination.filesystem.credentials]
azure_storage_account_name="Please set me up!"
azure_storage_account_key="Please set me up!"
By default, the filesystem destination will store your files as JSONL
. You can tell your pipeline to choose a different format with the loader_file_format
property that you can set directly on the pipeline or via your config.toml
. Available values are jsonl
, parquet
and csv
:
[pipeline] # in ./dlt/config.toml
loader_file_format="parquet"
3. Running your pipeline for the first time
The dlt
cli has also created a main pipeline script for you at stripe_analytics_pipeline.py
, as well as a folder stripe_analytics
that contains additional python files for your source. These files are your local copies which you can modify to fit your needs. In some cases you may find that you only need to do small changes to your pipelines or add some configurations, in other cases these files can serve as a working starting point for your code, but will need to be adjusted to do what you need them to do.
The main pipeline script will look something like this:
from typing import Optional, Tuple
import dlt
from pendulum import DateTime
from stripe_analytics import (
ENDPOINTS,
INCREMENTAL_ENDPOINTS,
incremental_stripe_source,
metrics_resource,
stripe_source,
)
def load_data(
endpoints: Tuple[str, ...] = ENDPOINTS + INCREMENTAL_ENDPOINTS,
start_date: Optional[DateTime] = None,
end_date: Optional[DateTime] = None,
) -> None:
"""
This demo script uses the resources with non-incremental
loading based on "replace" mode to load all data from provided endpoints.
Args:
endpoints: A tuple of endpoint names to retrieve data from. Defaults to most popular Stripe API endpoints.
start_date: An optional start date to limit the data retrieved. Defaults to None.
end_date: An optional end date to limit the data retrieved. Defaults to None.
"""
pipeline = dlt.pipeline(
pipeline_name="stripe_analytics",
destination='filesystem',
dataset_name="stripe_updated",
)
source = stripe_source(
endpoints=endpoints, start_date=start_date, end_date=end_date
)
load_info = pipeline.run(source)
print(load_info)
def load_incremental_endpoints(
endpoints: Tuple[str, ...] = INCREMENTAL_ENDPOINTS,
initial_start_date: Optional[DateTime] = None,
end_date: Optional[DateTime] = None,
) -> None:
"""
This demo script demonstrates the use of resources with incremental loading, based on the "append" mode.
This approach enables us to load all the data
for the first time and only retrieve the newest data later,
without duplicating and downloading a massive amount of data.
Make sure you're loading objects that don't change over time.
Args:
endpoints: A tuple of incremental endpoint names to retrieve data from.
Defaults to Stripe API endpoints with uneditable data.
initial_start_date: An optional parameter that specifies the initial value for dlt.sources.incremental.
If parameter is not None, then load only data that were created after initial_start_date on the first run.
Defaults to None. Format: datetime(YYYY, MM, DD).
end_date: An optional end date to limit the data retrieved.
Defaults to None. Format: datetime(YYYY, MM, DD).
"""
pipeline = dlt.pipeline(
pipeline_name="stripe_analytics",
destination='filesystem',
dataset_name="stripe_incremental",
)
# load all data on the first run that created before end_date
source = incremental_stripe_source(
endpoints=endpoints,
initial_start_date=initial_start_date,
end_date=end_date,
)
load_info = pipeline.run(source)
print(load_info)
# # load nothing, because incremental loading and end date limit
# source = incremental_stripe_source(
# endpoints=endpoints,
# initial_start_date=initial_start_date,
# end_date=end_date,
# )
# load_info = pipeline.run(source)
# print(load_info)
#
# # load only the new data that created after end_date
# source = incremental_stripe_source(
# endpoints=endpoints,
# initial_start_date=initial_start_date,
# )
# load_info = pipeline.run(source)
# print(load_info)
def load_data_and_get_metrics() -> None:
"""
With the pipeline, you can calculate the most important metrics
and store them in a database as a resource.
Store metrics, get calculated metrics from the database, build dashboards.
Supported metrics:
Monthly Recurring Revenue (MRR),
Subscription churn rate.
Pipeline returns both metrics.
Use Subscription and Event endpoints to calculate the metrics.
"""
pipeline = dlt.pipeline(
pipeline_name="stripe_analytics",
destination='filesystem',
dataset_name="stripe_metrics",
)
# Event is an endpoint with uneditable data, so we can use 'incremental_stripe_source'.
source_event = incremental_stripe_source(endpoints=("Event",))
# Subscription is an endpoint with editable data, use stripe_source.
source_subs = stripe_source(endpoints=("Subscription",))
# convert dates to the timestamp format
source_event.resources["Event"].apply_hints(
columns={
"created": {"data_type": "timestamp"},
}
)
source_subs.resources["Subscription"].apply_hints(
columns={
"created": {"data_type": "timestamp"},
}
)
load_info = pipeline.run(data=[source_subs, source_event])
print(load_info)
resource = metrics_resource()
load_info = pipeline.run(resource)
print(load_info)
if __name__ == "__main__":
load_data()
# # load only data that was created during the period between the Jan 1, 2024 (incl.), and the Feb 1, 2024 (not incl.).
# from pendulum import datetime
# load_data(start_date=datetime(2024, 1, 1), end_date=datetime(2024, 2, 1))
# # load only data that was created during the period between the May 3, 2023 (incl.), and the March 1, 2024 (not incl.).
# load_incremental_endpoints(
# endpoints=("Event",),
# initial_start_date=datetime(2023, 5, 3),
# end_date=datetime(2024, 3, 1),
# )
# # load Subscription and Event data, calculate metrics, store them in a database
# load_data_and_get_metrics()
Provided you have set up your credentials, you can run your pipeline like a regular python script with the following command:
python stripe_analytics_pipeline.py
4. Inspecting your load result
You can now inspect the state of your pipeline with the dlt
cli:
dlt pipeline stripe_analytics info
You can also use streamlit to inspect the contents of your Azure Cloud Storage
destination for this:
# install streamlit
pip install streamlit
# run the streamlit app for your pipeline with the dlt cli:
dlt pipeline stripe_analytics show
5. Next steps to get your pipeline running in production
One of the beauties of dlt
is, that we are just a plain Python library, so you can run your pipeline in any environment that supports Python >= 3.8. We have a couple of helpers and guides in our docs to get you there:
The Deploy section will show you how to deploy your pipeline to
- Deploy with GitHub Actions: Learn how to deploy your
dlt
pipeline using GitHub Actions. - Deploy with Airflow and Google Composer: Follow this guide to deploy your pipeline with Airflow and Google Composer.
- Deploy with Google Cloud Functions: Discover how to deploy your
dlt
pipeline using Google Cloud Functions. - More Deployment Options: Explore other deployment options for your
dlt
pipeline here.
The running in production section will teach you about:
- How to Monitor your pipeline: Learn how to effectively monitor your
dlt
pipeline in production to ensure smooth operations and quick issue resolution. How to Monitor your pipeline - Set up alerts: Configure alerts to get notified about important events and potential issues in your
dlt
pipeline, helping you to take timely actions. Set up alerts - Set up tracing: Implement tracing to gain insights into the execution and performance of your
dlt
pipeline, making it easier to debug and optimize. And set up tracing
Available Sources and Resources
For this verified source the following sources and resources are available
Source incremental_stripe_source
This source provides detailed transactional and subscription data from Stripe's payment platform.
Resource Name | Write Disposition | Description |
---|---|---|
Event | append | This resource retrieves significant activities in a Stripe account. It includes detailed information about various transactions like payments, invoices, subscriptions, etc. |
Source stripe_source
"Stripe source provides transactional data, subscription details, and key business metrics from Stripe platform."
Resource Name | Write Disposition | Description |
---|---|---|
Metrics | append | This resource provides key metrics for the Stripe account, such as churn rate, creation date, and monthly recurring revenue (MRR). |
Subscription | replace | This resource includes detailed information about subscriptions in the Stripe account, including billing details, discount coupons, invoice settings, and more. |
Additional pipeline guides
- Load data from DigitalOcean to AlloyDB in python with dlt
- Load data from Azure Cloud Storage to DuckDB in python with dlt
- Load data from Braze to Microsoft SQL Server in python with dlt
- Load data from GitLab to Timescale in python with dlt
- Load data from IFTTT to Azure Cosmos DB in python with dlt
- Load data from Trello to Azure Cosmos DB in python with dlt
- Load data from IFTTT to Dremio in python with dlt
- Load data from Oracle Database to MotherDuck in python with dlt
- Load data from Fivetran to BigQuery in python with dlt
- Load data from AWS S3 to CockroachDB in python with dlt