Python Guide: Loading Data from stripe
to redshift
using dlt
Library
Join our Slack community or book a call with our support engineer Violetta.
This page provides technical documentation on how to load data from Stripe
, a comprehensive payment processing platform supporting 135+ currencies, simple APIs, easy integration, and transparent pricing, to Redshift
, Amazon's fully managed, petabyte-scale data warehouse service in the cloud. The process utilizes an open-source Python library, dlt
, to facilitate the data transfer. More information about Stripe
can be found at https://stripe.com. The guide aims to help you scale your business faster by leveraging Stripe
's robust features and Redshift
's scalability, all with the help of dlt
.
dlt
Key Features
- Scalability through iterators, chunking, and parallelization:
dlt
provides scalable data extraction by leveraging iterators, chunking, and parallelization techniques. This approach allows for efficient processing of large datasets by breaking them down into manageable chunks. Read more - Implicit extraction DAGs:
dlt
incorporates the concept of implicit extraction DAGs to handle the dependencies between data sources and their transformations automatically. Read more - Pipeline Metadata:
dlt
pipelines leverage metadata to provide governance capabilities. This metadata includes load IDs, which consist of a timestamp and pipeline name. Read more - Schema Enforcement and Curation:
dlt
empowers users to enforce and curate schemas, ensuring data consistency and quality. Schemas define the structure of normalized data and guide the processing and loading of data. Read more - Schema evolution:
dlt
enables proactive governance by alerting users to schema changes. When modifications occur in the source data’s schema,dlt
notifies stakeholders. Read more
Getting started with your pipeline locally
0. Prerequisites
dlt
requires Python 3.8 or higher. Additionally, you need to have the pip
package manager installed, and we recommend using a virtual environment to manage your dependencies. You can learn more about preparing your computer for dlt in our installation reference.
1. Install dlt
First you need to install the dlt
library with the correct extras for Redshift
:
pip install "dlt[redshift]"
The dlt
cli has a useful command to get you started with any combination of source and destination. For this example, we want to load data from Stripe
to Redshift
. You can run the following commands to create a starting point for loading data from Stripe
to Redshift
:
# create a new directory
mkdir stripe_analytics_pipeline
cd stripe_analytics_pipeline
# initialize a new pipeline with your source and destination
dlt init stripe_analytics redshift
# install the required dependencies
pip install -r requirements.txt
The last command will install the required dependencies for your pipeline. The dependencies are listed in the requirements.txt
:
pandas>=2.0.0
stripe>=5.0.0
dlt[redshift]>=0.3.5
You now have the following folder structure in your project:
stripe_analytics_pipeline/
├── .dlt/
│ ├── config.toml # configs for your pipeline
│ └── secrets.toml # secrets for your pipeline
├── stripe_analytics/ # folder with source specific files
│ └── ...
├── stripe_analytics_pipeline.py # your main pipeline script
├── requirements.txt # dependencies for your pipeline
└── .gitignore # ignore files for git (not required)
2. Configuring your source and destination credentials
The dlt
cli will have created a .dlt
directory in your project folder. This directory contains a config.toml
file and a secrets.toml
file that you can use to configure your pipeline. The automatically created version of these files look like this:
generated config.toml
# put your configuration values here
[runtime]
log_level="WARNING" # the system log level of dlt
# use the dlthub_telemetry setting to enable/disable anonymous usage data reporting, see https://dlthub.com/docs/telemetry
dlthub_telemetry = true
generated secrets.toml
# put your secret values and credentials here. do not share this file and do not push it to github
[sources.stripe_analytics]
stripe_secret_key = "stripe_secret_key" # please set me up!
[destination.redshift.credentials]
database = "database" # please set me up!
password = "password" # please set me up!
username = "username" # please set me up!
host = "host" # please set me up!
port = 5439
connect_timeout = 15
2.1. Adjust the generated code to your usecase
3. Running your pipeline for the first time
The dlt
cli has also created a main pipeline script for you at stripe_analytics_pipeline.py
, as well as a folder stripe_analytics
that contains additional python files for your source. These files are your local copies which you can modify to fit your needs. In some cases you may find that you only need to do small changes to your pipelines or add some configurations, in other cases these files can serve as a working starting point for your code, but will need to be adjusted to do what you need them to do.
The main pipeline script will look something like this:
from typing import Optional, Tuple
import dlt
from pendulum import DateTime, datetime
from stripe_analytics import (
ENDPOINTS,
INCREMENTAL_ENDPOINTS,
incremental_stripe_source,
metrics_resource,
stripe_source,
)
def load_data(
endpoints: Tuple[str, ...] = ENDPOINTS + INCREMENTAL_ENDPOINTS,
start_date: Optional[DateTime] = None,
end_date: Optional[DateTime] = None,
) -> None:
"""
This demo script uses the resources with non-incremental
loading based on "replace" mode to load all data from provided endpoints.
Args:
endpoints: A tuple of endpoint names to retrieve data from. Defaults to most popular Stripe API endpoints.
start_date: An optional start date to limit the data retrieved. Defaults to None.
end_date: An optional end date to limit the data retrieved. Defaults to None.
"""
pipeline = dlt.pipeline(
pipeline_name="stripe_analytics",
destination='redshift',
dataset_name="stripe_updated",
)
source = stripe_source(
endpoints=endpoints, start_date=start_date, end_date=end_date
)
load_info = pipeline.run(source)
print(load_info)
def load_incremental_endpoints(
endpoints: Tuple[str, ...] = INCREMENTAL_ENDPOINTS,
initial_start_date: Optional[DateTime] = None,
end_date: Optional[DateTime] = None,
) -> None:
"""
This demo script demonstrates the use of resources with incremental loading, based on the "append" mode.
This approach enables us to load all the data
for the first time and only retrieve the newest data later,
without duplicating and downloading a massive amount of data.
Make sure you're loading objects that don't change over time.
Args:
endpoints: A tuple of incremental endpoint names to retrieve data from.
Defaults to Stripe API endpoints with uneditable data.
initial_start_date: An optional parameter that specifies the initial value for dlt.sources.incremental.
If parameter is not None, then load only data that were created after initial_start_date on the first run.
Defaults to None. Format: datetime(YYYY, MM, DD).
end_date: An optional end date to limit the data retrieved.
Defaults to None. Format: datetime(YYYY, MM, DD).
"""
pipeline = dlt.pipeline(
pipeline_name="stripe_analytics",
destination='redshift',
dataset_name="stripe_incremental",
)
# load all data on the first run that created before end_date
source = incremental_stripe_source(
endpoints=endpoints,
initial_start_date=initial_start_date,
end_date=end_date,
)
load_info = pipeline.run(source)
print(load_info)
# # load nothing, because incremental loading and end date limit
# source = incremental_stripe_source(
# endpoints=endpoints,
# initial_start_date=initial_start_date,
# end_date=end_date,
# )
# load_info = pipeline.run(source)
# print(load_info)
#
# # load only the new data that created after end_date
# source = incremental_stripe_source(
# endpoints=endpoints,
# initial_start_date=initial_start_date,
# )
# load_info = pipeline.run(source)
# print(load_info)
def load_data_and_get_metrics() -> None:
"""
With the pipeline, you can calculate the most important metrics
and store them in a database as a resource.
Store metrics, get calculated metrics from the database, build dashboards.
Supported metrics:
Monthly Recurring Revenue (MRR),
Subscription churn rate.
Pipeline returns both metrics.
Use Subscription and Event endpoints to calculate the metrics.
"""
pipeline = dlt.pipeline(
pipeline_name="stripe_analytics",
destination='redshift',
dataset_name="stripe_metrics",
)
# Event is an endpoint with uneditable data, so we can use 'incremental_stripe_source'.
source_event = incremental_stripe_source(endpoints=("Event",))
# Subscription is an endpoint with editable data, use stripe_source.
source_subs = stripe_source(endpoints=("Subscription",))
# convert dates to the timestamp format
source_event.resources["Event"].apply_hints(
columns={
"created": {"data_type": "timestamp"},
}
)
source_subs.resources["Subscription"].apply_hints(
columns={
"created": {"data_type": "timestamp"},
}
)
load_info = pipeline.run(data=[source_subs, source_event])
print(load_info)
resource = metrics_resource()
load_info = pipeline.run(resource)
print(load_info)
if __name__ == "__main__":
# load only data that was created during the period between the Jan 1, 2024 (incl.), and the Feb 1, 2024 (not incl.).
load_data(start_date=datetime(2024, 1, 1), end_date=datetime(2024, 2, 1))
# load only data that was created during the period between the May 3, 2023 (incl.), and the March 1, 2024 (not incl.).
load_incremental_endpoints(
endpoints=("Event",),
initial_start_date=datetime(2023, 5, 3),
end_date=datetime(2024, 3, 1),
)
# load Subscription and Event data, calculate metrics, store them in a database
load_data_and_get_metrics()
Provided you have set up your credentials, you can run your pipeline like a regular python script with the following command:
python stripe_analytics_pipeline.py
4. Inspecting your load result
You can now inspect the state of your pipeline with the dlt
cli:
dlt pipeline stripe_analytics info
You can also use streamlit to inspect the contents of your Redshift
destination for this:
# install streamlit
pip install streamlit
# run the streamlit app for your pipeline with the dlt cli:
dlt pipeline stripe_analytics show
5. Next steps to get your pipeline running in production
One of the beauties of dlt
is, that we are just a plain Python library, so you can run your pipeline in any environment that supports Python >= 3.8. We have a couple of helpers and guides in our docs to get you there:
The Deploy section will show you how to deploy your pipeline to
- Deploy with Github Actions:
dlt
can be deployed using Github Actions. This CI/CD runner can be used for free and you can specify when the GitHub Action should run using a cron schedule expression. - Deploy with Airflow: You can deploy your
dlt
pipeline with Airflow. This guide will show you how to create an Airflow DAG for your pipeline script and how to add the necessary environment variables with secrets to Airflow. - Deploy with Google Cloud Functions:
dlt
also supports deployment with Google Cloud Functions. This guide will walk you through the steps needed to deploy your pipeline on Google Cloud. - Other Deployment Options: There are many other ways you can deploy your
dlt
pipeline. You can find more options in the deployment guide.
The running in production section will teach you about:
- Monitor your Pipeline:
dlt
provides robust monitoring capabilities to keep track of your pipeline's performance and status. You can get detailed insights into your pipeline's operation, including the number of records processed, the duration of each step, and more. Read more about monitoring your pipeline here. - Set up Alerts: With
dlt
, you can set up alerts to be notified of any significant events or changes in your pipeline. This feature helps you to respond quickly to any issues and ensure the smooth operation of your pipeline. Learn more about setting up alerts here. - Set up Tracing: Tracing in
dlt
allows you to track the execution of your pipeline, helping you identify bottlenecks and optimize your pipeline's performance. Find out more about setting up tracing here.
Available Sources and Resources
For this verified source the following sources and resources are available
Source incremental_stripe_source
This source provides detailed transactional and subscription data from Stripe's payment platform.
Resource Name | Write Disposition | Description |
---|---|---|
Event | append | This resource retrieves significant activities in a Stripe account. It includes detailed information about various transactions like payments, invoices, subscriptions, etc. |
Source stripe_source
"Stripe source provides transactional data, subscription details, and key business metrics from Stripe platform."
Resource Name | Write Disposition | Description |
---|---|---|
Metrics | append | This resource provides key metrics for the Stripe account, such as churn rate, creation date, and monthly recurring revenue (MRR). |
Subscription | replace | This resource includes detailed information about subscriptions in the Stripe account, including billing details, discount coupons, invoice settings, and more. |
Additional pipeline guides
- Load data from Klarna to Azure Cloud Storage in python with dlt
- Load data from Sentry to AlloyDB in python with dlt
- Load data from GitHub to Supabase in python with dlt
- Load data from Rest API to PostgreSQL in python with dlt
- Load data from PostgreSQL to Supabase in python with dlt
- Load data from Sentry to Timescale in python with dlt
- Load data from Coinbase to Databricks in python with dlt
- Load data from Imgur to Azure Synapse in python with dlt
- Load data from Google Analytics to BigQuery in python with dlt
- Load data from Rest API to The Local Filesystem in python with dlt