Loading Stripe Data to Neon Serverless Postgres using dlt in Python
We will be using the dlt PostgreSQL destination to connect to Neon Serverless Postgres. You can get the connection string for your Neon Serverless Postgres database as described in the Neon Serverless Postgres Docs.
Join our Slack community or book a call with our support engineer Violetta.
This documentation provides a guide on loading data from Stripe
to Neon Serverless Postgres
using the open-source Python library dlt
. Stripe
is a comprehensive payments platform that supports over 135 currencies, offering simple APIs, easy integration, and transparent pricing. Neon Serverless Postgres
is a serverless platform designed to help you build reliable and scalable applications quickly, using the database you love. By leveraging dlt
, you can efficiently extract, transform, and load your Stripe
data into Neon Serverless Postgres
, ensuring seamless data integration and scalability. For more information about Stripe
, visit Stripe's website.
dlt
Key Features
- Scalability via iterators, chunking, and parallelization:
dlt
offers scalable data extraction by leveraging iterators, chunking, and parallelization techniques. This approach allows for efficient processing of large datasets by breaking them down into manageable chunks. Learn more - Implicit extraction DAGs:
dlt
incorporates the concept of implicit extraction DAGs to handle the dependencies between data sources and their transformations automatically. This ensures data consistency and integrity. Learn more - Pipeline Metadata:
dlt
pipelines leverage metadata to provide governance capabilities. This includes load IDs for tracking data loads and facilitating data lineage and traceability. Learn more - Schema Enforcement and Curation:
dlt
empowers users to enforce and curate schemas, ensuring data consistency and quality. Learn more - Transformation Options:
dlt
provides various options for transforming data after loading, including using dbt, thedlt
SQL client, and Pandas. Learn more
Getting started with your pipeline locally
0. Prerequisites
dlt
requires Python 3.8 or higher. Additionally, you need to have the pip
package manager installed, and we recommend using a virtual environment to manage your dependencies. You can learn more about preparing your computer for dlt in our installation reference.
1. Install dlt
First you need to install the dlt
library with the correct extras for Neon Serverless Postgres
:
pip install "dlt[postgres]"
The dlt
cli has a useful command to get you started with any combination of source and destination. For this example, we want to load data from Stripe
to Neon Serverless Postgres
. You can run the following commands to create a starting point for loading data from Stripe
to Neon Serverless Postgres
:
# create a new directory
mkdir stripe_analytics_pipeline
cd stripe_analytics_pipeline
# initialize a new pipeline with your source and destination
dlt init stripe_analytics postgres
# install the required dependencies
pip install -r requirements.txt
The last command will install the required dependencies for your pipeline. The dependencies are listed in the requirements.txt
:
pandas>=2.0.0
stripe>=5.0.0
dlt[postgres]>=0.3.5
You now have the following folder structure in your project:
stripe_analytics_pipeline/
├── .dlt/
│ ├── config.toml # configs for your pipeline
│ └── secrets.toml # secrets for your pipeline
├── stripe_analytics/ # folder with source specific files
│ └── ...
├── stripe_analytics_pipeline.py # your main pipeline script
├── requirements.txt # dependencies for your pipeline
└── .gitignore # ignore files for git (not required)
2. Configuring your source and destination credentials
The dlt
cli will have created a .dlt
directory in your project folder. This directory contains a config.toml
file and a secrets.toml
file that you can use to configure your pipeline. The automatically created version of these files look like this:
generated config.toml
# put your configuration values here
[runtime]
log_level="WARNING" # the system log level of dlt
# use the dlthub_telemetry setting to enable/disable anonymous usage data reporting, see https://dlthub.com/docs/telemetry
dlthub_telemetry = true
generated secrets.toml
# put your secret values and credentials here. do not share this file and do not push it to github
[sources.stripe_analytics]
stripe_secret_key = "stripe_secret_key" # please set me up!
[destination.postgres]
dataset_name = "dataset_name" # please set me up!
[destination.postgres.credentials]
database = "database" # please set me up!
password = "password" # please set me up!
username = "username" # please set me up!
host = "host" # please set me up!
port = 5432
connect_timeout = 15
2.1. Adjust the generated code to your usecase
3. Running your pipeline for the first time
The dlt
cli has also created a main pipeline script for you at stripe_analytics_pipeline.py
, as well as a folder stripe_analytics
that contains additional python files for your source. These files are your local copies which you can modify to fit your needs. In some cases you may find that you only need to do small changes to your pipelines or add some configurations, in other cases these files can serve as a working starting point for your code, but will need to be adjusted to do what you need them to do.
The main pipeline script will look something like this:
from typing import Optional, Tuple
import dlt
from pendulum import DateTime
from stripe_analytics import (
ENDPOINTS,
INCREMENTAL_ENDPOINTS,
incremental_stripe_source,
metrics_resource,
stripe_source,
)
def load_data(
endpoints: Tuple[str, ...] = ENDPOINTS + INCREMENTAL_ENDPOINTS,
start_date: Optional[DateTime] = None,
end_date: Optional[DateTime] = None,
) -> None:
"""
This demo script uses the resources with non-incremental
loading based on "replace" mode to load all data from provided endpoints.
Args:
endpoints: A tuple of endpoint names to retrieve data from. Defaults to most popular Stripe API endpoints.
start_date: An optional start date to limit the data retrieved. Defaults to None.
end_date: An optional end date to limit the data retrieved. Defaults to None.
"""
pipeline = dlt.pipeline(
pipeline_name="stripe_analytics",
destination='postgres',
dataset_name="stripe_updated",
)
source = stripe_source(
endpoints=endpoints, start_date=start_date, end_date=end_date
)
load_info = pipeline.run(source)
print(load_info)
def load_incremental_endpoints(
endpoints: Tuple[str, ...] = INCREMENTAL_ENDPOINTS,
initial_start_date: Optional[DateTime] = None,
end_date: Optional[DateTime] = None,
) -> None:
"""
This demo script demonstrates the use of resources with incremental loading, based on the "append" mode.
This approach enables us to load all the data
for the first time and only retrieve the newest data later,
without duplicating and downloading a massive amount of data.
Make sure you're loading objects that don't change over time.
Args:
endpoints: A tuple of incremental endpoint names to retrieve data from.
Defaults to Stripe API endpoints with uneditable data.
initial_start_date: An optional parameter that specifies the initial value for dlt.sources.incremental.
If parameter is not None, then load only data that were created after initial_start_date on the first run.
Defaults to None. Format: datetime(YYYY, MM, DD).
end_date: An optional end date to limit the data retrieved.
Defaults to None. Format: datetime(YYYY, MM, DD).
"""
pipeline = dlt.pipeline(
pipeline_name="stripe_analytics",
destination='postgres',
dataset_name="stripe_incremental",
)
# load all data on the first run that created before end_date
source = incremental_stripe_source(
endpoints=endpoints,
initial_start_date=initial_start_date,
end_date=end_date,
)
load_info = pipeline.run(source)
print(load_info)
# # load nothing, because incremental loading and end date limit
# source = incremental_stripe_source(
# endpoints=endpoints,
# initial_start_date=initial_start_date,
# end_date=end_date,
# )
# load_info = pipeline.run(source)
# print(load_info)
#
# # load only the new data that created after end_date
# source = incremental_stripe_source(
# endpoints=endpoints,
# initial_start_date=initial_start_date,
# )
# load_info = pipeline.run(source)
# print(load_info)
def load_data_and_get_metrics() -> None:
"""
With the pipeline, you can calculate the most important metrics
and store them in a database as a resource.
Store metrics, get calculated metrics from the database, build dashboards.
Supported metrics:
Monthly Recurring Revenue (MRR),
Subscription churn rate.
Pipeline returns both metrics.
Use Subscription and Event endpoints to calculate the metrics.
"""
pipeline = dlt.pipeline(
pipeline_name="stripe_analytics",
destination='postgres',
dataset_name="stripe_metrics",
)
# Event is an endpoint with uneditable data, so we can use 'incremental_stripe_source'.
source_event = incremental_stripe_source(endpoints=("Event",))
# Subscription is an endpoint with editable data, use stripe_source.
source_subs = stripe_source(endpoints=("Subscription",))
# convert dates to the timestamp format
source_event.resources["Event"].apply_hints(
columns={
"created": {"data_type": "timestamp"},
}
)
source_subs.resources["Subscription"].apply_hints(
columns={
"created": {"data_type": "timestamp"},
}
)
load_info = pipeline.run(data=[source_subs, source_event])
print(load_info)
resource = metrics_resource()
load_info = pipeline.run(resource)
print(load_info)
if __name__ == "__main__":
load_data()
# # load only data that was created during the period between the Jan 1, 2024 (incl.), and the Feb 1, 2024 (not incl.).
# from pendulum import datetime
# load_data(start_date=datetime(2024, 1, 1), end_date=datetime(2024, 2, 1))
# # load only data that was created during the period between the May 3, 2023 (incl.), and the March 1, 2024 (not incl.).
# load_incremental_endpoints(
# endpoints=("Event",),
# initial_start_date=datetime(2023, 5, 3),
# end_date=datetime(2024, 3, 1),
# )
# # load Subscription and Event data, calculate metrics, store them in a database
# load_data_and_get_metrics()
Provided you have set up your credentials, you can run your pipeline like a regular python script with the following command:
python stripe_analytics_pipeline.py
4. Inspecting your load result
You can now inspect the state of your pipeline with the dlt
cli:
dlt pipeline stripe_analytics info
You can also use streamlit to inspect the contents of your Neon Serverless Postgres
destination for this:
# install streamlit
pip install streamlit
# run the streamlit app for your pipeline with the dlt cli:
dlt pipeline stripe_analytics show
5. Next steps to get your pipeline running in production
One of the beauties of dlt
is, that we are just a plain Python library, so you can run your pipeline in any environment that supports Python >= 3.8. We have a couple of helpers and guides in our docs to get you there:
The Deploy section will show you how to deploy your pipeline to
- Deploy with GitHub Actions: Learn how to deploy your
dlt
pipeline using GitHub Actions, a CI/CD runner that you can use for free. Read more - Deploy with Airflow and Google Composer: Follow this guide to deploy your
dlt
pipeline with Airflow and Google Composer, a managed Airflow environment provided by Google. Read more - Deploy with Google Cloud Functions: Discover how to deploy your
dlt
pipeline using Google Cloud Functions, a serverless execution environment. Read more - Explore other deployment options: Check out various other methods to deploy your
dlt
pipelines. Read more
The running in production section will teach you about:
- How to Monitor your pipeline: Learn how to effectively monitor your
dlt
pipeline to ensure smooth operation and quickly identify any issues. How to Monitor your pipeline - Set up alerts: Stay informed about your pipeline's status by setting up alerts. This guide will show you how to configure alerts to get notified about important events. Set up alerts
- Set up tracing: Implement tracing to get detailed insights into your pipeline's performance and behavior. This will help you diagnose and troubleshoot issues more efficiently. And set up tracing
Available Sources and Resources
For this verified source the following sources and resources are available
Source incremental_stripe_source
This source provides detailed transactional and subscription data from Stripe's payment platform.
Resource Name | Write Disposition | Description |
---|---|---|
Event | append | This resource retrieves significant activities in a Stripe account. It includes detailed information about various transactions like payments, invoices, subscriptions, etc. |
Source stripe_source
"Stripe source provides transactional data, subscription details, and key business metrics from Stripe platform."
Resource Name | Write Disposition | Description |
---|---|---|
Metrics | append | This resource provides key metrics for the Stripe account, such as churn rate, creation date, and monthly recurring revenue (MRR). |
Subscription | replace | This resource includes detailed information about subscriptions in the Stripe account, including billing details, discount coupons, invoice settings, and more. |
Additional pipeline guides
- Load data from IFTTT to Azure Cloud Storage in python with dlt
- Load data from GitLab to AWS S3 in python with dlt
- Load data from Spotify to The Local Filesystem in python with dlt
- Load data from Star Trek to Supabase in python with dlt
- Load data from SAP HANA to AlloyDB in python with dlt
- Load data from SAP HANA to Redshift in python with dlt
- Load data from Vimeo to AWS Athena in python with dlt
- Load data from Cisco Meraki to Azure Cosmos DB in python with dlt
- Load data from Keap to YugabyteDB in python with dlt
- Load data from Looker to Azure Cloud Storage in python with dlt