Loading Data from The Local Filesystem
to Azure Cloud Storage
with dlt
in Python
Join our Slack community or book a call with our support engineer Violetta.
Loading data from the The Local Filesystem
to Azure Cloud Storage
is straightforward with the dlt
library. This verified source streams CSV, Parquet, and JSONL files from the The Local Filesystem
using the reader source. The Azure Cloud Storage
destination stores data on Microsoft Azure, enabling easy creation of data lakes. You can upload data in JSONL, Parquet, or CSV formats. The open-source Python library dlt
facilitates this process. For more information about the source, visit here.
dlt
Key Features
- Robust Governance Support:
dlt
pipelines offer robust governance through metadata utilization, schema enforcement, and schema change alerts. Learn more about governance support. - Filesystem Destination: Store data in remote file systems and bucket storages like S3, Google Storage, or Azure Blob Storage. Get started with filesystem destination.
- Schema Enforcement and Curation: Ensure data consistency and quality by enforcing and curating schemas. Dive into schema enforcement and curation.
- Scaling and Finetuning:
dlt
offers several configuration options to scale up and finetune pipelines, including parallel processing and memory buffer adjustments. Explore scaling and finetuning. - Provider Key Formats:
dlt
translates standard format keys into provider-specific formats, supporting both TOML and environment variables. Understand more about provider key formats.
Getting started with your pipeline locally
0. Prerequisites
dlt
requires Python 3.8 or higher. Additionally, you need to have the pip
package manager installed, and we recommend using a virtual environment to manage your dependencies. You can learn more about preparing your computer for dlt in our installation reference.
1. Install dlt
First you need to install the dlt
library with the correct extras for Azure Cloud Storage
:
pip install "dlt[filesystem]"
The dlt
cli has a useful command to get you started with any combination of source and destination. For this example, we want to load data from The Local Filesystem
to Azure Cloud Storage
. You can run the following commands to create a starting point for loading data from The Local Filesystem
to Azure Cloud Storage
:
# create a new directory
mkdir filesystem_local_pipeline
cd filesystem_local_pipeline
# initialize a new pipeline with your source and destination
dlt init filesystem filesystem
# install the required dependencies
pip install -r requirements.txt
The last command will install the required dependencies for your pipeline. The dependencies are listed in the requirements.txt
:
dlt[filesystem]>=0.4.3a0
openpyxl>=3.0.0
You now have the following folder structure in your project:
filesystem_local_pipeline/
├── .dlt/
│ ├── config.toml # configs for your pipeline
│ └── secrets.toml # secrets for your pipeline
├── filesystem/ # folder with source specific files
│ └── ...
├── filesystem_pipeline.py # your main pipeline script
├── requirements.txt # dependencies for your pipeline
└── .gitignore # ignore files for git (not required)
2. Configuring your source and destination credentials
The dlt
cli will have created a .dlt
directory in your project folder. This directory contains a config.toml
file and a secrets.toml
file that you can use to configure your pipeline. The automatically created version of these files look like this:
generated config.toml
# put your configuration values here
[runtime]
log_level="WARNING" # the system log level of dlt
# use the dlthub_telemetry setting to enable/disable anonymous usage data reporting, see https://dlthub.com/docs/telemetry
dlthub_telemetry = true
[sources.filesystem]
bucket_url = "bucket_url" # please set me up!
generated secrets.toml
# put your secret values and credentials here. do not share this file and do not push it to github
[sources.filesystem.credentials]
aws_access_key_id = "aws_access_key_id" # please set me up!
aws_secret_access_key = "aws_secret_access_key" # please set me up!
[destination.filesystem]
dataset_name = "dataset_name" # please set me up!
bucket_url = "bucket_url" # please set me up!
[destination.filesystem.credentials]
aws_access_key_id = "aws_access_key_id" # please set me up!
aws_secret_access_key = "aws_secret_access_key" # please set me up!
2.1. Adjust the generated code to your usecase
The default filesystem destination is configured to connect to AWS S3. To load to Azure Cloud Storage, update the [destination.filesystem.credentials]
section in your secrets.toml
.
[destination.filesystem.credentials]
azure_storage_account_name="Please set me up!"
azure_storage_account_key="Please set me up!"
By default, the filesystem destination will store your files as JSONL
. You can tell your pipeline to choose a different format with the loader_file_format
property that you can set directly on the pipeline or via your config.toml
. Available values are jsonl
, parquet
and csv
:
[pipeline] # in ./dlt/config.toml
loader_file_format="parquet"
The default filesystem source is configured to load from AWS S3. To load from the local filesystem, remove the [sources.filesystem.credentials]
section from your secrets.toml.
You can also set up your bucket_url
(which is the local file path) and file_glob
in the config.toml
[sources.filesystem] # use [sources.readers.credentials] for the "readers" source
bucket_url="file://path/to/my/output"
file_glob="*"
3. Running your pipeline for the first time
The dlt
cli has also created a main pipeline script for you at filesystem_pipeline.py
, as well as a folder filesystem
that contains additional python files for your source. These files are your local copies which you can modify to fit your needs. In some cases you may find that you only need to do small changes to your pipelines or add some configurations, in other cases these files can serve as a working starting point for your code, but will need to be adjusted to do what you need them to do.
The main pipeline script will look something like this:
import os
import posixpath
from typing import Iterator
import dlt
from dlt.sources import TDataItems
try:
from .filesystem import FileItemDict, filesystem, readers, read_csv # type: ignore
except ImportError:
from filesystem import (
FileItemDict,
filesystem,
readers,
read_csv,
)
TESTS_BUCKET_URL = posixpath.abspath("../tests/filesystem/samples/")
def stream_and_merge_csv() -> None:
"""Demonstrates how to scan folder with csv files, load them in chunk and merge on date column with the previous load"""
pipeline = dlt.pipeline(
pipeline_name="standard_filesystem_csv",
destination='filesystem',
dataset_name="met_data",
)
# met_data contains 3 columns, where "date" column contain a date on which we want to merge
# load all csvs in A801
met_files = readers(
bucket_url=TESTS_BUCKET_URL, file_glob="met_csv/A801/*.csv"
).read_csv()
# tell dlt to merge on date
met_files.apply_hints(write_disposition="merge", merge_key="date")
# NOTE: we load to met_csv table
load_info = pipeline.run(met_files.with_name("met_csv"))
print(load_info)
print(pipeline.last_trace.last_normalize_info)
# now let's simulate loading on next day. not only current data appears but also updated record for the previous day are present
# all the records for previous day will be replaced with new records
met_files = readers(
bucket_url=TESTS_BUCKET_URL, file_glob="met_csv/A801/*.csv"
).read_csv()
met_files.apply_hints(write_disposition="merge", merge_key="date")
load_info = pipeline.run(met_files.with_name("met_csv"))
# you can also do dlt pipeline standard_filesystem_csv show to confirm that all A801 were replaced with A803 records for overlapping day
print(load_info)
print(pipeline.last_trace.last_normalize_info)
def read_csv_with_duckdb() -> None:
pipeline = dlt.pipeline(
pipeline_name="standard_filesystem",
destination='filesystem',
dataset_name="met_data_duckdb",
)
# load all the CSV data, excluding headers
met_files = readers(
bucket_url=TESTS_BUCKET_URL, file_glob="met_csv/A801/*.csv"
).read_csv_duckdb(chunk_size=1000, header=True)
load_info = pipeline.run(met_files)
print(load_info)
print(pipeline.last_trace.last_normalize_info)
def read_csv_duckdb_compressed() -> None:
pipeline = dlt.pipeline(
pipeline_name="standard_filesystem",
destination='filesystem',
dataset_name="taxi_data",
full_refresh=True,
)
met_files = readers(
bucket_url=TESTS_BUCKET_URL,
file_glob="gzip/*",
).read_csv_duckdb()
load_info = pipeline.run(met_files)
print(load_info)
print(pipeline.last_trace.last_normalize_info)
def read_parquet_and_jsonl_chunked() -> None:
pipeline = dlt.pipeline(
pipeline_name="standard_filesystem",
destination='filesystem',
dataset_name="teams_data",
)
# When using the readers resource, you can specify a filter to select only the files you
# want to load including a glob pattern. If you use a recursive glob pattern, the filenames
# will include the path to the file inside the bucket_url.
# JSONL reading (in large chunks!)
jsonl_reader = readers(TESTS_BUCKET_URL, file_glob="**/*.jsonl").read_jsonl(
chunksize=10000
)
# PARQUET reading
parquet_reader = readers(TESTS_BUCKET_URL, file_glob="**/*.parquet").read_parquet()
# load both folders together to specified tables
load_info = pipeline.run(
[
jsonl_reader.with_name("jsonl_team_data"),
parquet_reader.with_name("parquet_team_data"),
]
)
print(load_info)
print(pipeline.last_trace.last_normalize_info)
def read_custom_file_type_excel() -> None:
"""Here we create an extract pipeline using filesystem resource and read_csv transformer"""
# instantiate filesystem directly to get list of files (FileItems) and then use read_excel transformer to get
# content of excel via pandas
@dlt.transformer(standalone=True)
def read_excel(
items: Iterator[FileItemDict], sheet_name: str
) -> Iterator[TDataItems]:
import pandas as pd
for file_obj in items:
with file_obj.open() as file:
yield pd.read_excel(file, sheet_name).to_dict(orient="records")
freshman_xls = filesystem(
bucket_url=TESTS_BUCKET_URL, file_glob="../custom/freshman_kgs.xlsx"
) | read_excel("freshman_table")
load_info = dlt.run(
freshman_xls.with_name("freshman"),
destination='filesystem',
dataset_name="freshman_data",
)
print(load_info)
def copy_files_resource(local_folder: str) -> None:
"""Demonstrates how to copy files locally by adding a step to filesystem resource and the to load the download listing to db"""
pipeline = dlt.pipeline(
pipeline_name="standard_filesystem_copy",
destination='filesystem',
dataset_name="standard_filesystem_data",
)
# a step that copies files into test storage
def _copy(item: FileItemDict) -> FileItemDict:
# instantiate fsspec and copy file
dest_file = os.path.join(local_folder, item["relative_path"])
# create dest folder
os.makedirs(os.path.dirname(dest_file), exist_ok=True)
# download file
item.fsspec.download(item["file_url"], dest_file)
# return file item unchanged
return item
# use recursive glob pattern and add file copy step
downloader = filesystem(TESTS_BUCKET_URL, file_glob="**").add_map(_copy)
# NOTE: you do not need to load any data to execute extract, below we obtain
# a list of files in a bucket and also copy them locally
# listing = list(downloader)
# print(listing)
# download to table "listing"
# downloader = filesystem(TESTS_BUCKET_URL, file_glob="**").add_map(_copy)
load_info = pipeline.run(
downloader.with_name("listing"), write_disposition="replace"
)
# pretty print the information on data that was loaded
print(load_info)
print(pipeline.last_trace.last_normalize_info)
def read_files_incrementally_mtime() -> None:
pipeline = dlt.pipeline(
pipeline_name="standard_filesystem_incremental",
destination='filesystem',
dataset_name="file_tracker",
)
# here we modify filesystem resource so it will track only new csv files
# such resource may be then combined with transformer doing further processing
new_files = filesystem(bucket_url=TESTS_BUCKET_URL, file_glob="csv/*")
# add incremental on modification time
new_files.apply_hints(incremental=dlt.sources.incremental("modification_date"))
load_info = pipeline.run((new_files | read_csv()).with_name("csv_files"))
print(load_info)
print(pipeline.last_trace.last_normalize_info)
# load again - no new files!
new_files = filesystem(bucket_url=TESTS_BUCKET_URL, file_glob="csv/*")
# add incremental on modification time
new_files.apply_hints(incremental=dlt.sources.incremental("modification_date"))
load_info = pipeline.run((new_files | read_csv()).with_name("csv_files"))
print(load_info)
print(pipeline.last_trace.last_normalize_info)
if __name__ == "__main__":
copy_files_resource("_storage")
stream_and_merge_csv()
read_parquet_and_jsonl_chunked()
read_custom_file_type_excel()
read_files_incrementally_mtime()
read_csv_with_duckdb()
read_csv_duckdb_compressed()
Provided you have set up your credentials, you can run your pipeline like a regular python script with the following command:
python filesystem_pipeline.py
4. Inspecting your load result
You can now inspect the state of your pipeline with the dlt
cli:
dlt pipeline filesystem_pipeline info
You can also use streamlit to inspect the contents of your Azure Cloud Storage
destination for this:
# install streamlit
pip install streamlit
# run the streamlit app for your pipeline with the dlt cli:
dlt pipeline filesystem_pipeline show
5. Next steps to get your pipeline running in production
One of the beauties of dlt
is, that we are just a plain Python library, so you can run your pipeline in any environment that supports Python >= 3.8. We have a couple of helpers and guides in our docs to get you there:
The Deploy section will show you how to deploy your pipeline to
- Deploy with GitHub Actions: Learn how to deploy your
dlt
pipeline using GitHub Actions for CI/CD. Follow the guide here. - Deploy with Airflow and Google Composer: Discover how to deploy your
dlt
pipeline with Airflow and Google Composer. Detailed instructions can be found here. - Deploy with Google Cloud Functions: Explore the steps to deploy your
dlt
pipeline using Google Cloud Functions. Check the guide here. - Other Deployment Methods: Find various other methods to deploy your
dlt
pipeline, including serverless and other cloud services. More information is available here.
The running in production section will teach you about:
- How to Monitor your pipeline: Learn how to effectively monitor your
dlt
pipeline in production by following the guide here. - Set up alerts: Ensure you are promptly notified of any issues or important events in your
dlt
pipeline by setting up alerts. Follow the instructions here. - And set up tracing: Gain insights into the performance and behavior of your
dlt
pipeline by setting up tracing. Detailed steps can be found here.
Additional pipeline guides
- Load data from IFTTT to Databricks in python with dlt
- Load data from Jira to Timescale in python with dlt
- Load data from ClickHouse Cloud to Databricks in python with dlt
- Load data from Bitbucket to BigQuery in python with dlt
- Load data from Apple App-Store Connect to Azure Synapse in python with dlt
- Load data from Imgur to Google Cloud Storage in python with dlt
- Load data from Crypt API to MotherDuck in python with dlt
- Load data from Vimeo to CockroachDB in python with dlt
- Load data from Google Sheets to PostgreSQL in python with dlt
- Load data from Google Sheets to AWS Athena in python with dlt