Skip to main content

Load Data from IFTTT to Databricks Using Python dlt

Need help deploying these pipelines, or figuring out how to run them in your data stack?

Join our Slack community or book a call with our support engineer Violetta.

Loading data from IFTTT to Databricks using the dlt library allows users to automate and streamline their workflows efficiently. IFTTT is a web-based service that enables users to create automated actions, or applets, between different applications and devices. By setting up triggers and actions, IFTTT helps in automating tasks and enhancing productivity. Databricks, a unified data analytics platform developed by the creators of Apache Spark™, accelerates innovation by integrating data science, engineering, and business. Utilizing the open-source Python library dlt, users can seamlessly load data from IFTTT into Databricks, leveraging the powerful capabilities of both platforms. For more information on IFTTT, visit ifttt.com.

dlt Key Features

  • Automated Maintenance: With schema inference and evolution, along with alerts and short declarative code, maintenance becomes simple. Learn more here.
  • Run Anywhere: dlt can run on Airflow, serverless functions, notebooks, and scales on both micro and large infrastructure. Explore more here.
  • User-Friendly Interface: A declarative interface that is accessible for beginners and powerful for senior professionals. Discover more here.
  • Scalability: Offers scalable data extraction by leveraging iterators, chunking, and parallelization techniques. More details here.
  • Governance Support: Provides robust governance through pipeline metadata, schema enforcement, and schema change alerts. Learn more here.

Getting started with your pipeline locally

OpenAPI Source Generator dlt-init-openapi

This walkthrough makes use of the dlt-init-openapi generator cli tool. You can read more about it here. The code generated by this tool uses the dlt rest_api verified source, docs for this are here.

0. Prerequisites

dlt and dlt-init-openapi requires Python 3.9 or higher. Additionally, you need to have the pip package manager installed, and we recommend using a virtual environment to manage your dependencies. You can learn more about preparing your computer for dlt in our installation reference.

1. Install dlt and dlt-init-openapi

First you need to install the dlt-init-openapi cli tool.

pip install dlt-init-openapi

The dlt-init-openapi cli is a powerful generator which you can use to turn any OpenAPI spec into a dlt source to ingest data from that api. The quality of the generator source is dependent on how well the API is designed and how accurate the OpenAPI spec you are using is. You may need to make tweaks to the generated code, you can learn more about this here.

# generate pipeline
# NOTE: add_limit adds a global limit, you can remove this later
# NOTE: you will need to select which endpoints to render, you
# can just hit Enter and all will be rendered.
dlt-init-openapi ifttt_service --url https://raw.githubusercontent.com/dlt-hub/openapi-specs/main/open_api_specs/Business/ifttt_service.yaml --global-limit 2
cd ifttt_service_pipeline
# install generated requirements
pip install -r requirements.txt

The last command will install the required dependencies for your pipeline. The dependencies are listed in the requirements.txt:

dlt>=0.4.12

You now have the following folder structure in your project:

ifttt_service_pipeline/
├── .dlt/
│ ├── config.toml # configs for your pipeline
│ └── secrets.toml # secrets for your pipeline
├── rest_api/ # The rest api verified source
│ └── ...
├── ifttt_service/
│ └── __init__.py # TODO: possibly tweak this file
├── ifttt_service_pipeline.py # your main pipeline script
├── requirements.txt # dependencies for your pipeline
└── .gitignore # ignore files for git (not required)

1.1. Tweak ifttt_service/__init__.py

This file contains the generated configuration of your rest_api. You can continue with the next steps and leave it as is, but you might want to come back here and make adjustments if you need your rest_api source set up in a different way. The generated file for the ifttt_service source will look like this:

Click to view full file (53 lines)

from typing import List

import dlt
from dlt.extract.source import DltResource
from rest_api import rest_api_source
from rest_api.typing import RESTAPIConfig


@dlt.source(name="ifttt_service_source", max_table_nesting=2)
def ifttt_service_source(
api_key: str = dlt.secrets.value,
base_url: str = dlt.config.value,
) -> List[DltResource]:

# source configuration
source_config: RESTAPIConfig = {
"client": {
"base_url": base_url,
"auth": {

"type": "api_key",
"api_key": api_key,
"name": "IFTTT-Service-Key",
"location": "header"

},
},
"resources":
[
{
"name": "statu",
"table_name": "statu",
"endpoint": {
"path": "/ifttt/v1/status",
"paginator": "auto",
}
},
{
"name": "user_info",
"table_name": "user_info",
"primary_key": "id",
"write_disposition": "merge",
"endpoint": {
"data_selector": "data",
"path": "/ifttt/v1/user/info",
"paginator": "auto",
}
},
]
}

return rest_api_source(source_config)

2. Configuring your source and destination credentials

info

dlt-init-openapi will try to detect which authentication mechanism (if any) is used by the API in question and add a placeholder in your secrets.toml.

  • If you know your API needs authentication, but none was detected, you can learn more about adding authentication to the rest_api here.
  • OAuth detection currently is not supported, but you can supply your own authentication mechanism as outlined here.

The dlt cli will have created a .dlt directory in your project folder. This directory contains a config.toml file and a secrets.toml file that you can use to configure your pipeline. The automatically created version of these files look like this:

generated config.toml


[runtime]
log_level="INFO"

[sources.ifttt_service]
# Base URL for the API
base_url = "{scheme}://{hostname}"

generated secrets.toml


[sources.ifttt_service]
# secrets for your ifttt_service source
api_key = "FILL ME OUT" # TODO: fill in your credentials

2.1. Adjust the generated code to your usecase

Further help setting up your source and destinations

At this time, the dlt-init-openapi cli tool will always create pipelines that load to a local duckdb instance. Switching to a different destination is trivial, all you need to do is change the destination parameter in ifttt_service_pipeline.py to databricks and supply the credentials as outlined in the destination doc linked below.

  • Read more about setting up the rest_api source in our docs.
  • Read more about setting up the Databricks destination in our docs.

3. Running your pipeline for the first time

The dlt cli has also created a main pipeline script for you at ifttt_service_pipeline.py, as well as a folder ifttt_service that contains additional python files for your source. These files are your local copies which you can modify to fit your needs. In some cases you may find that you only need to do small changes to your pipelines or add some configurations, in other cases these files can serve as a working starting point for your code, but will need to be adjusted to do what you need them to do.

The main pipeline script will look something like this:


import dlt

from ifttt_service import ifttt_service_source


if __name__ == "__main__":
pipeline = dlt.pipeline(
pipeline_name="ifttt_service_pipeline",
destination='duckdb',
dataset_name="ifttt_service_data",
progress="log",
export_schema_path="schemas/export"
)
source = ifttt_service_source()
info = pipeline.run(source)
print(info)

Provided you have set up your credentials, you can run your pipeline like a regular python script with the following command:

python ifttt_service_pipeline.py

4. Inspecting your load result

You can now inspect the state of your pipeline with the dlt cli:

dlt pipeline ifttt_service_pipeline info

You can also use streamlit to inspect the contents of your Databricks destination for this:

# install streamlit
pip install streamlit
# run the streamlit app for your pipeline with the dlt cli:
dlt pipeline ifttt_service_pipeline show

5. Next steps to get your pipeline running in production

One of the beauties of dlt is, that we are just a plain Python library, so you can run your pipeline in any environment that supports Python >= 3.8. We have a couple of helpers and guides in our docs to get you there:

The Deploy section will show you how to deploy your pipeline to

  • Deploy with GitHub Actions: Learn how to deploy your pipeline using GitHub Actions by following this guide.
  • Deploy with Airflow and Google Composer: This tutorial walks you through deploying a pipeline with Airflow and Google Composer.
  • Deploy with Google Cloud Functions: Follow this guide to deploy your pipeline using Google Cloud Functions.
  • Explore other deployment options: Discover various other methods to deploy your pipeline by visiting this page.

The running in production section will teach you about:

  • How to Monitor your pipeline: Learn how to effectively monitor your dlt pipeline in production to ensure smooth operations and quick issue resolution. How to Monitor your pipeline
  • Set up alerts: Set up alerts to get notified about important events and issues in your dlt pipeline, allowing for proactive management and quick response. Set up alerts
  • Set up tracing: Implement tracing to gain detailed insights into the execution of your dlt pipeline, helping you to troubleshoot and optimize performance. And set up tracing

Available Sources and Resources

For this verified source the following sources and resources are available

Source IFTTT

Fetches user data and status updates from IFTTT for automation and integration purposes.

Resource NameWrite DispositionDescription
user_infoappendInformation about the user
statuappendStatus updates or logs related to applet actions

Additional pipeline guides

This demo works on codespaces. Codespaces is a development environment available for free to anyone with a Github account. You'll be asked to fork the demo repository and from there the README guides you with further steps.
The demo uses the Continue VSCode extension.

Off to codespaces!

DHelp

Ask a question

Welcome to "Codex Central", your next-gen help center, driven by OpenAI's GPT-4 model. It's more than just a forum or a FAQ hub – it's a dynamic knowledge base where coders can find AI-assisted solutions to their pressing problems. With GPT-4's powerful comprehension and predictive abilities, Codex Central provides instantaneous issue resolution, insightful debugging, and personalized guidance. Get your code running smoothly with the unparalleled support at Codex Central - coding help reimagined with AI prowess.