Loading Data from ClickHouse Cloud
to Azure Cloud Storage
in python
Join our Slack community or book a call with our support engineer Violetta.
ClickHouse Cloud
is a high-performance, scalable cloud-based data warehousing solution designed for real-time analytics. It enables businesses to run complex queries on large datasets with exceptional speed and efficiency. This documentation covers how to load data from ClickHouse Cloud
to Azure Cloud Storage
using the open-source Python library dlt
. Azure Cloud Storage
stores data on Microsoft Azure, allowing you to create datalakes with ease. You can upload data in various formats such as JSONL, Parquet, or CSV. This guide provides step-by-step instructions to help you seamlessly manage and transfer your data, ensuring robust security and automated backups. For more information about ClickHouse Cloud
, visit ClickHouse Cloud.
dlt
Key Features
- Snowflake Integration: Seamlessly load data into Snowflake with dlt.
- Governance Support: Robust governance through metadata, schema enforcement, and schema change alerts. Read more about governance features.
- Staging Support: Use S3, GCS, or Azure Blob Storage as staging destinations for efficient data loading. Learn about staging support.
- Flexible Authentication: Supports password, key pair, and external authentication methods for Snowflake. Explore the authentication types.
- Write Dispositions and File Formats: Supports various write dispositions and file formats like JSONL and Parquet. Check out the supported file formats.
Getting started with your pipeline locally
dlt-init-openapi
0. Prerequisites
dlt
and dlt-init-openapi
requires Python 3.9 or higher. Additionally, you need to have the pip
package manager installed, and we recommend using a virtual environment to manage your dependencies. You can learn more about preparing your computer for dlt in our installation reference.
1. Install dlt and dlt-init-openapi
First you need to install the dlt-init-openapi
cli tool.
pip install dlt-init-openapi
The dlt-init-openapi
cli is a powerful generator which you can use to turn any OpenAPI spec into a dlt
source to ingest data from that api. The quality of the generator source is dependent on how well the API is designed and how accurate the OpenAPI spec you are using is. You may need to make tweaks to the generated code, you can learn more about this here.
# generate pipeline
# NOTE: add_limit adds a global limit, you can remove this later
# NOTE: you will need to select which endpoints to render, you
# can just hit Enter and all will be rendered.
dlt-init-openapi clickhouse_cloud --url https://raw.githubusercontent.com/dlt-hub/openapi-specs/main/open_api_specs/Business/click_house_cloud.yaml --global-limit 2
cd clickhouse_cloud_pipeline
# install generated requirements
pip install -r requirements.txt
The last command will install the required dependencies for your pipeline. The dependencies are listed in the requirements.txt
:
dlt>=0.4.12
You now have the following folder structure in your project:
clickhouse_cloud_pipeline/
├── .dlt/
│ ├── config.toml # configs for your pipeline
│ └── secrets.toml # secrets for your pipeline
├── rest_api/ # The rest api verified source
│ └── ...
├── clickhouse_cloud/
│ └── __init__.py # TODO: possibly tweak this file
├── clickhouse_cloud_pipeline.py # your main pipeline script
├── requirements.txt # dependencies for your pipeline
└── .gitignore # ignore files for git (not required)
1.1. Tweak clickhouse_cloud/__init__.py
This file contains the generated configuration of your rest_api. You can continue with the next steps and leave it as is, but you might want to come back here and make adjustments if you need your rest_api
source set up in a different way. The generated file for the clickhouse_cloud source will look like this:
Click to view full file (229 lines)
from typing import List
import dlt
from dlt.extract.source import DltResource
from rest_api import rest_api_source
from rest_api.typing import RESTAPIConfig
@dlt.source(name="clickhouse_cloud_source", max_table_nesting=2)
def clickhouse_cloud_source(
base_url: str = dlt.config.value,
) -> List[DltResource]:
# source configuration
source_config: RESTAPIConfig = {
"client": {
"base_url": base_url,
},
"resources":
[
# Returns a list of all organization activities.
{
"name": "organization_id_activities",
"table_name": "activity",
"primary_key": "id",
"write_disposition": "merge",
"endpoint": {
"data_selector": "result",
"path": "/v1/organizations/:organizationId/activities",
"paginator": "auto",
}
},
# Returns a single organization activity by ID.
{
"name": "organization_id_activities_activity_id",
"table_name": "activity_id",
"primary_key": "requestId",
"write_disposition": "merge",
"endpoint": {
"data_selector": "$",
"path": "/v1/organizations/:organizationId/activities/:activityId",
"paginator": "auto",
}
},
# Returns a list of all keys in the organization.
{
"name": "organization_id_keys",
"table_name": "api_key",
"primary_key": "id",
"write_disposition": "merge",
"endpoint": {
"data_selector": "result",
"path": "/v1/organizations/:organizationId/keys",
"paginator": "auto",
}
},
# Returns a list of all backups for the service. The most recent backups comes first in the list.
{
"name": "organization_id_services_service_id_backups",
"table_name": "backup",
"primary_key": "id",
"write_disposition": "merge",
"endpoint": {
"data_selector": "result",
"path": "/v1/organizations/:organizationId/services/:serviceId/backups",
"paginator": "auto",
}
},
# Returns a single backup info.
{
"name": "organization_id_services_service_id_backups_backup_id",
"table_name": "backup_id",
"primary_key": "requestId",
"write_disposition": "merge",
"endpoint": {
"data_selector": "$",
"path": "/v1/organizations/:organizationId/services/:serviceId/backups/:backupId",
"paginator": "auto",
}
},
# Returns list of all organization invitations.
{
"name": "organization_id_invitations",
"table_name": "invitation",
"primary_key": "id",
"write_disposition": "merge",
"endpoint": {
"data_selector": "result",
"path": "/v1/organizations/:organizationId/invitations",
"paginator": "auto",
}
},
# Returns details for a single organization invitation.
{
"name": "organization_id_invitations_invitation_id",
"table_name": "invitation_id",
"primary_key": "requestId",
"write_disposition": "merge",
"endpoint": {
"data_selector": "$",
"path": "/v1/organizations/:organizationId/invitations/:invitationId",
"paginator": "auto",
}
},
# Returns a single key details.
{
"name": "organization_id_keys_key_id",
"table_name": "key_id",
"primary_key": "requestId",
"write_disposition": "merge",
"endpoint": {
"data_selector": "$",
"path": "/v1/organizations/:organizationId/keys/:keyId",
"paginator": "auto",
}
},
# Returns a list of all members in the organization.
{
"name": "organization_id_members",
"table_name": "member",
"endpoint": {
"data_selector": "result",
"path": "/v1/organizations/:organizationId/members",
"paginator": "auto",
}
},
# Returns a list with a single organization associated with the API key in the request.
{
"name": "",
"table_name": "organization",
"primary_key": "id",
"write_disposition": "merge",
"endpoint": {
"data_selector": "result",
"path": "/v1/organizations",
"paginator": "auto",
}
},
# Returns details of a single organization. In order to get the details, the auth key must belong to the organization.
{
"name": "organization_id",
"table_name": "organization_id",
"primary_key": "requestId",
"write_disposition": "merge",
"endpoint": {
"data_selector": "$",
"path": "/v1/organizations/:organizationId",
"paginator": "auto",
}
},
# Information required to set up a private endpoint
{
"name": "organization_id_services_service_id_private_endpoint_config",
"table_name": "private_endpoint_config",
"primary_key": "requestId",
"write_disposition": "merge",
"endpoint": {
"data_selector": "$",
"path": "/v1/organizations/:organizationId/services/:serviceId/privateEndpointConfig",
"paginator": "auto",
}
},
# Information required to set up a private endpoint
{
"name": "organization_id_private_endpoint_config",
"table_name": "private_endpoint_config",
"primary_key": "requestId",
"write_disposition": "merge",
"endpoint": {
"data_selector": "$",
"path": "/v1/organizations/:organizationId/privateEndpointConfig",
"params": {
"Cloud provider identifier": "FILL_ME_IN", # TODO: fill in required query parameter
"Cloud provider region": "FILL_ME_IN", # TODO: fill in required query parameter
},
"paginator": "auto",
}
},
# Returns prometheus metrics for a service. Please contact support to enable this feature.
{
"name": "organization_id_services_service_id_prometheus",
"table_name": "prometheu",
"endpoint": {
"path": "/v1/organizations/:organizationId/services/:serviceId/prometheus",
"paginator": "auto",
}
},
# Returns a list of all services in the organization.
{
"name": "organization_id_services",
"table_name": "service",
"primary_key": "id",
"write_disposition": "merge",
"endpoint": {
"data_selector": "result",
"path": "/v1/organizations/:organizationId/services",
"paginator": "auto",
}
},
# Returns a service that belongs to the organization
{
"name": "organization_id_services_service_id",
"table_name": "service_id",
"primary_key": "requestId",
"write_disposition": "merge",
"endpoint": {
"data_selector": "$",
"path": "/v1/organizations/:organizationId/services/:serviceId",
"paginator": "auto",
}
},
# Returns a single organization member details.
{
"name": "organization_id_members_user_id",
"table_name": "user_id",
"primary_key": "requestId",
"write_disposition": "merge",
"endpoint": {
"data_selector": "$",
"path": "/v1/organizations/:organizationId/members/:userId",
"paginator": "auto",
}
},
]
}
return rest_api_source(source_config)
2. Configuring your source and destination credentials
dlt-init-openapi
will try to detect which authentication mechanism (if any) is used by the API in question and add a placeholder in your secrets.toml
.
The dlt
cli will have created a .dlt
directory in your project folder. This directory contains a config.toml
file and a secrets.toml
file that you can use to configure your pipeline. The automatically created version of these files look like this:
generated config.toml
[runtime]
log_level="INFO"
[sources.clickhouse_cloud]
# Base URL for the API
base_url = "https://api.clickhouse.cloud"
generated secrets.toml
[sources.clickhouse_cloud]
# secrets for your clickhouse_cloud source
# example_api_key = "example value"
2.1. Adjust the generated code to your usecase
At this time, the dlt-init-openapi
cli tool will always create pipelines that load to a local duckdb
instance. Switching to a different destination is trivial, all you need to do is change the destination
parameter in clickhouse_cloud_pipeline.py
to filesystem and supply the credentials as outlined in the destination doc linked below.
The default filesystem destination is configured to connect to AWS S3. To load to Azure Cloud Storage, update the [destination.filesystem.credentials]
section in your secrets.toml
.
[destination.filesystem.credentials]
azure_storage_account_name="Please set me up!"
azure_storage_account_key="Please set me up!"
By default, the filesystem destination will store your files as JSONL
. You can tell your pipeline to choose a different format with the loader_file_format
property that you can set directly on the pipeline or via your config.toml
. Available values are jsonl
, parquet
and csv
:
[pipeline] # in ./dlt/config.toml
loader_file_format="parquet"
3. Running your pipeline for the first time
The dlt
cli has also created a main pipeline script for you at clickhouse_cloud_pipeline.py
, as well as a folder clickhouse_cloud
that contains additional python files for your source. These files are your local copies which you can modify to fit your needs. In some cases you may find that you only need to do small changes to your pipelines or add some configurations, in other cases these files can serve as a working starting point for your code, but will need to be adjusted to do what you need them to do.
The main pipeline script will look something like this:
import dlt
from clickhouse_cloud import clickhouse_cloud_source
if __name__ == "__main__":
pipeline = dlt.pipeline(
pipeline_name="clickhouse_cloud_pipeline",
destination='duckdb',
dataset_name="clickhouse_cloud_data",
progress="log",
export_schema_path="schemas/export"
)
source = clickhouse_cloud_source()
info = pipeline.run(source)
print(info)
Provided you have set up your credentials, you can run your pipeline like a regular python script with the following command:
python clickhouse_cloud_pipeline.py
4. Inspecting your load result
You can now inspect the state of your pipeline with the dlt
cli:
dlt pipeline clickhouse_cloud_pipeline info
You can also use streamlit to inspect the contents of your Azure Cloud Storage
destination for this:
# install streamlit
pip install streamlit
# run the streamlit app for your pipeline with the dlt cli:
dlt pipeline clickhouse_cloud_pipeline show
5. Next steps to get your pipeline running in production
One of the beauties of dlt
is, that we are just a plain Python library, so you can run your pipeline in any environment that supports Python >= 3.8. We have a couple of helpers and guides in our docs to get you there:
The Deploy section will show you how to deploy your pipeline to
- Deploy with Github Actions: Learn how to deploy a pipeline using Github Actions.
- Deploy with Airflow and Google Composer: Follow this guide to deploy a pipeline with Airflow and Google Composer.
- Deploy with Google Cloud Functions: Discover how to deploy your pipeline using Google Cloud Functions.
- More Deployment Options: Explore additional methods for deploying a pipeline here.
The running in production section will teach you about:
- How to Monitor your pipeline: Learn how to effectively monitor your
dlt
pipeline in production to ensure smooth operation and quick identification of issues. Read more - Set up alerts: Set up alerts to get notified about important events or issues in your
dlt
pipeline, ensuring that you can respond promptly to any problems. Read more - Set up tracing: Implement tracing to get detailed insights into the execution of your
dlt
pipeline, helping in debugging and performance optimization. Read more
Available Sources and Resources
For this verified source the following sources and resources are available
Source ClickHouse Cloud
Streams various organizational, user activity, and configuration data from ClickHouse Cloud.
Resource Name | Write Disposition | Description |
---|---|---|
activity | append | Logs and tracks user activities within the ClickHouse Cloud platform. |
api_key | append | Stores API keys used for authenticating and authorizing API requests. |
invitation_id | append | Unique identifiers for invitations sent to users for accessing the platform. |
organization_id | append | Unique identifiers for different organizations using the ClickHouse Cloud service. |
prometheu | append | Stores Prometheus monitoring data for performance and health metrics. |
invitation | append | Contains details of invitations sent to users for joining the platform. |
activity_id | append | Unique identifiers for specific activities logged within the platform. |
member | append | Information about members of various organizations within ClickHouse Cloud. |
private_endpoint_config | append | Configuration settings for private endpoints used to access ClickHouse Cloud securely. |
service | append | Details about various services provided by ClickHouse Cloud. |
service_id | append | Unique identifiers for different services within the platform. |
backup | append | Information about backups created for data stored in ClickHouse Cloud. |
user_id | append | Unique identifiers for users accessing the ClickHouse Cloud platform. |
key_id | append | Unique identifiers for API keys used within the platform. |
backup_id | append | Unique identifiers for backups created within the platform. |
organization | append | Details about organizations using ClickHouse Cloud, including names and contact information. |
Additional pipeline guides
- Load data from Crypt API to Databricks in python with dlt
- Load data from Soundcloud to PostgreSQL in python with dlt
- Load data from Box Platform API to MotherDuck in python with dlt
- Load data from Shopify to Azure Cloud Storage in python with dlt
- Load data from Google Sheets to Supabase in python with dlt
- Load data from Cisco Meraki to Azure Synapse in python with dlt
- Load data from Coinbase to Azure Synapse in python with dlt
- Load data from Qualtrics to ClickHouse in python with dlt
- Load data from Adobe Analytics to Microsoft SQL Server in python with dlt
- Load data from Microsoft SQL Server to PostgreSQL in python with dlt