Loading Data from ClickHouse Cloud
to Timescale
Using dlt
in Python
We will be using the dlt PostgreSQL destination to connect to Timescale. You can get the connection string for your timescale database as described in the Timescale Docs.
Join our Slack community or book a call with our support engineer Violetta.
ClickHouse Cloud
is a high-performance, scalable cloud-based data warehousing solution designed for real-time analytics. It enables businesses to run complex queries on large datasets with exceptional speed and efficiency. With ClickHouse Cloud
, users can seamlessly manage their data, scale resources on demand, and gain deep insights through advanced analytics capabilities. The platform provides robust security, automated backups, and integration with various data sources to support data-driven decision-making. Timescale
is engineered to handle demanding workloads, such as time series, vector, events, and analytics data. Built on PostgreSQL, it offers expert support at no extra charge. This documentation explains how to load data from ClickHouse Cloud
to Timescale
using the open-source Python library dlt
. For more information about ClickHouse Cloud
, visit here.
dlt
Key Features
- Pipeline Metadata:
dlt
pipelines leverage metadata to provide governance capabilities, including load IDs for incremental transformations and data lineage. Learn more. - Schema Enforcement and Curation: Ensure data consistency and quality by enforcing and curating schemas. Learn more.
- Scalability via Iterators, Chunking, and Parallelization: Efficiently process large datasets by breaking them down into manageable chunks and using parallel processing. Learn more.
- Staging Support: Use S3 and GCS as file staging destinations to upload files in parquet or jsonl format. Learn more.
- Schema Evolution Alerts: Proactive governance with alerts for schema changes, ensuring stakeholders can review and validate modifications. Learn more.
Getting started with your pipeline locally
dlt-init-openapi
0. Prerequisites
dlt
and dlt-init-openapi
requires Python 3.9 or higher. Additionally, you need to have the pip
package manager installed, and we recommend using a virtual environment to manage your dependencies. You can learn more about preparing your computer for dlt in our installation reference.
1. Install dlt and dlt-init-openapi
First you need to install the dlt-init-openapi
cli tool.
pip install dlt-init-openapi
The dlt-init-openapi
cli is a powerful generator which you can use to turn any OpenAPI spec into a dlt
source to ingest data from that api. The quality of the generator source is dependent on how well the API is designed and how accurate the OpenAPI spec you are using is. You may need to make tweaks to the generated code, you can learn more about this here.
# generate pipeline
# NOTE: add_limit adds a global limit, you can remove this later
# NOTE: you will need to select which endpoints to render, you
# can just hit Enter and all will be rendered.
dlt-init-openapi clickhouse_cloud --url https://raw.githubusercontent.com/dlt-hub/openapi-specs/main/open_api_specs/Business/click_house_cloud.yaml --global-limit 2
cd clickhouse_cloud_pipeline
# install generated requirements
pip install -r requirements.txt
The last command will install the required dependencies for your pipeline. The dependencies are listed in the requirements.txt
:
dlt>=0.4.12
You now have the following folder structure in your project:
clickhouse_cloud_pipeline/
├── .dlt/
│ ├── config.toml # configs for your pipeline
│ └── secrets.toml # secrets for your pipeline
├── rest_api/ # The rest api verified source
│ └── ...
├── clickhouse_cloud/
│ └── __init__.py # TODO: possibly tweak this file
├── clickhouse_cloud_pipeline.py # your main pipeline script
├── requirements.txt # dependencies for your pipeline
└── .gitignore # ignore files for git (not required)
1.1. Tweak clickhouse_cloud/__init__.py
This file contains the generated configuration of your rest_api. You can continue with the next steps and leave it as is, but you might want to come back here and make adjustments if you need your rest_api
source set up in a different way. The generated file for the clickhouse_cloud source will look like this:
Click to view full file (229 lines)
from typing import List
import dlt
from dlt.extract.source import DltResource
from rest_api import rest_api_source
from rest_api.typing import RESTAPIConfig
@dlt.source(name="clickhouse_cloud_source", max_table_nesting=2)
def clickhouse_cloud_source(
base_url: str = dlt.config.value,
) -> List[DltResource]:
# source configuration
source_config: RESTAPIConfig = {
"client": {
"base_url": base_url,
},
"resources":
[
# Returns a list of all organization activities.
{
"name": "organization_id_activities",
"table_name": "activity",
"primary_key": "id",
"write_disposition": "merge",
"endpoint": {
"data_selector": "result",
"path": "/v1/organizations/:organizationId/activities",
"paginator": "auto",
}
},
# Returns a single organization activity by ID.
{
"name": "organization_id_activities_activity_id",
"table_name": "activity_id",
"primary_key": "requestId",
"write_disposition": "merge",
"endpoint": {
"data_selector": "$",
"path": "/v1/organizations/:organizationId/activities/:activityId",
"paginator": "auto",
}
},
# Returns a list of all keys in the organization.
{
"name": "organization_id_keys",
"table_name": "api_key",
"primary_key": "id",
"write_disposition": "merge",
"endpoint": {
"data_selector": "result",
"path": "/v1/organizations/:organizationId/keys",
"paginator": "auto",
}
},
# Returns a list of all backups for the service. The most recent backups comes first in the list.
{
"name": "organization_id_services_service_id_backups",
"table_name": "backup",
"primary_key": "id",
"write_disposition": "merge",
"endpoint": {
"data_selector": "result",
"path": "/v1/organizations/:organizationId/services/:serviceId/backups",
"paginator": "auto",
}
},
# Returns a single backup info.
{
"name": "organization_id_services_service_id_backups_backup_id",
"table_name": "backup_id",
"primary_key": "requestId",
"write_disposition": "merge",
"endpoint": {
"data_selector": "$",
"path": "/v1/organizations/:organizationId/services/:serviceId/backups/:backupId",
"paginator": "auto",
}
},
# Returns list of all organization invitations.
{
"name": "organization_id_invitations",
"table_name": "invitation",
"primary_key": "id",
"write_disposition": "merge",
"endpoint": {
"data_selector": "result",
"path": "/v1/organizations/:organizationId/invitations",
"paginator": "auto",
}
},
# Returns details for a single organization invitation.
{
"name": "organization_id_invitations_invitation_id",
"table_name": "invitation_id",
"primary_key": "requestId",
"write_disposition": "merge",
"endpoint": {
"data_selector": "$",
"path": "/v1/organizations/:organizationId/invitations/:invitationId",
"paginator": "auto",
}
},
# Returns a single key details.
{
"name": "organization_id_keys_key_id",
"table_name": "key_id",
"primary_key": "requestId",
"write_disposition": "merge",
"endpoint": {
"data_selector": "$",
"path": "/v1/organizations/:organizationId/keys/:keyId",
"paginator": "auto",
}
},
# Returns a list of all members in the organization.
{
"name": "organization_id_members",
"table_name": "member",
"endpoint": {
"data_selector": "result",
"path": "/v1/organizations/:organizationId/members",
"paginator": "auto",
}
},
# Returns a list with a single organization associated with the API key in the request.
{
"name": "",
"table_name": "organization",
"primary_key": "id",
"write_disposition": "merge",
"endpoint": {
"data_selector": "result",
"path": "/v1/organizations",
"paginator": "auto",
}
},
# Returns details of a single organization. In order to get the details, the auth key must belong to the organization.
{
"name": "organization_id",
"table_name": "organization_id",
"primary_key": "requestId",
"write_disposition": "merge",
"endpoint": {
"data_selector": "$",
"path": "/v1/organizations/:organizationId",
"paginator": "auto",
}
},
# Information required to set up a private endpoint
{
"name": "organization_id_services_service_id_private_endpoint_config",
"table_name": "private_endpoint_config",
"primary_key": "requestId",
"write_disposition": "merge",
"endpoint": {
"data_selector": "$",
"path": "/v1/organizations/:organizationId/services/:serviceId/privateEndpointConfig",
"paginator": "auto",
}
},
# Information required to set up a private endpoint
{
"name": "organization_id_private_endpoint_config",
"table_name": "private_endpoint_config",
"primary_key": "requestId",
"write_disposition": "merge",
"endpoint": {
"data_selector": "$",
"path": "/v1/organizations/:organizationId/privateEndpointConfig",
"params": {
"Cloud provider identifier": "FILL_ME_IN", # TODO: fill in required query parameter
"Cloud provider region": "FILL_ME_IN", # TODO: fill in required query parameter
},
"paginator": "auto",
}
},
# Returns prometheus metrics for a service. Please contact support to enable this feature.
{
"name": "organization_id_services_service_id_prometheus",
"table_name": "prometheu",
"endpoint": {
"path": "/v1/organizations/:organizationId/services/:serviceId/prometheus",
"paginator": "auto",
}
},
# Returns a list of all services in the organization.
{
"name": "organization_id_services",
"table_name": "service",
"primary_key": "id",
"write_disposition": "merge",
"endpoint": {
"data_selector": "result",
"path": "/v1/organizations/:organizationId/services",
"paginator": "auto",
}
},
# Returns a service that belongs to the organization
{
"name": "organization_id_services_service_id",
"table_name": "service_id",
"primary_key": "requestId",
"write_disposition": "merge",
"endpoint": {
"data_selector": "$",
"path": "/v1/organizations/:organizationId/services/:serviceId",
"paginator": "auto",
}
},
# Returns a single organization member details.
{
"name": "organization_id_members_user_id",
"table_name": "user_id",
"primary_key": "requestId",
"write_disposition": "merge",
"endpoint": {
"data_selector": "$",
"path": "/v1/organizations/:organizationId/members/:userId",
"paginator": "auto",
}
},
]
}
return rest_api_source(source_config)
2. Configuring your source and destination credentials
dlt-init-openapi
will try to detect which authentication mechanism (if any) is used by the API in question and add a placeholder in your secrets.toml
.
The dlt
cli will have created a .dlt
directory in your project folder. This directory contains a config.toml
file and a secrets.toml
file that you can use to configure your pipeline. The automatically created version of these files look like this:
generated config.toml
[runtime]
log_level="INFO"
[sources.clickhouse_cloud]
# Base URL for the API
base_url = "https://api.clickhouse.cloud"
generated secrets.toml
[sources.clickhouse_cloud]
# secrets for your clickhouse_cloud source
# example_api_key = "example value"
2.1. Adjust the generated code to your usecase
At this time, the dlt-init-openapi
cli tool will always create pipelines that load to a local duckdb
instance. Switching to a different destination is trivial, all you need to do is change the destination
parameter in clickhouse_cloud_pipeline.py
to postgres and supply the credentials as outlined in the destination doc linked below.
3. Running your pipeline for the first time
The dlt
cli has also created a main pipeline script for you at clickhouse_cloud_pipeline.py
, as well as a folder clickhouse_cloud
that contains additional python files for your source. These files are your local copies which you can modify to fit your needs. In some cases you may find that you only need to do small changes to your pipelines or add some configurations, in other cases these files can serve as a working starting point for your code, but will need to be adjusted to do what you need them to do.
The main pipeline script will look something like this:
import dlt
from clickhouse_cloud import clickhouse_cloud_source
if __name__ == "__main__":
pipeline = dlt.pipeline(
pipeline_name="clickhouse_cloud_pipeline",
destination='duckdb',
dataset_name="clickhouse_cloud_data",
progress="log",
export_schema_path="schemas/export"
)
source = clickhouse_cloud_source()
info = pipeline.run(source)
print(info)
Provided you have set up your credentials, you can run your pipeline like a regular python script with the following command:
python clickhouse_cloud_pipeline.py
4. Inspecting your load result
You can now inspect the state of your pipeline with the dlt
cli:
dlt pipeline clickhouse_cloud_pipeline info
You can also use streamlit to inspect the contents of your Timescale
destination for this:
# install streamlit
pip install streamlit
# run the streamlit app for your pipeline with the dlt cli:
dlt pipeline clickhouse_cloud_pipeline show
5. Next steps to get your pipeline running in production
One of the beauties of dlt
is, that we are just a plain Python library, so you can run your pipeline in any environment that supports Python >= 3.8. We have a couple of helpers and guides in our docs to get you there:
The Deploy section will show you how to deploy your pipeline to
- Deploy with Github Actions: Learn how to deploy your
dlt
pipeline using Github Actions, a CI/CD runner that you can use for free. Follow the guide here. - Deploy with Airflow: Discover how to deploy your
dlt
pipeline with Airflow and Google Composer. Detailed instructions are available here. - Deploy with Google Cloud Functions: Explore the steps to deploy your
dlt
pipeline using Google Cloud Functions. Check out the guide here. - Other Deployment Methods: For additional deployment methods and detailed walkthroughs, visit the comprehensive guide here.
The running in production section will teach you about:
- How to Monitor your pipeline: Learn how to effectively monitor your
dlt
pipeline in production to ensure smooth operation and quick troubleshooting. How to Monitor your pipeline - Set up alerts: Set up alerts to get notified about any issues or important events in your
dlt
pipeline. This helps in proactive maintenance and quick response to problems. Set up alerts - Set up tracing: Implement tracing to capture detailed runtime information of your
dlt
pipeline, including timing and configuration details, to help with debugging and performance optimization. And set up tracing
Available Sources and Resources
For this verified source the following sources and resources are available
Source ClickHouse Cloud
Streams various organizational, user activity, and configuration data from ClickHouse Cloud.
Resource Name | Write Disposition | Description |
---|---|---|
activity | append | Logs and tracks user activities within the ClickHouse Cloud platform. |
api_key | append | Stores API keys used for authenticating and authorizing API requests. |
invitation_id | append | Unique identifiers for invitations sent to users for accessing the platform. |
organization_id | append | Unique identifiers for different organizations using the ClickHouse Cloud service. |
prometheu | append | Stores Prometheus monitoring data for performance and health metrics. |
invitation | append | Contains details of invitations sent to users for joining the platform. |
activity_id | append | Unique identifiers for specific activities logged within the platform. |
member | append | Information about members of various organizations within ClickHouse Cloud. |
private_endpoint_config | append | Configuration settings for private endpoints used to access ClickHouse Cloud securely. |
service | append | Details about various services provided by ClickHouse Cloud. |
service_id | append | Unique identifiers for different services within the platform. |
backup | append | Information about backups created for data stored in ClickHouse Cloud. |
user_id | append | Unique identifiers for users accessing the ClickHouse Cloud platform. |
key_id | append | Unique identifiers for API keys used within the platform. |
backup_id | append | Unique identifiers for backups created within the platform. |
organization | append | Details about organizations using ClickHouse Cloud, including names and contact information. |
Additional pipeline guides
- Load data from GitHub to Redshift in python with dlt
- Load data from DigitalOcean to EDB BigAnimal in python with dlt
- Load data from Crypt API to Databricks in python with dlt
- Load data from Jira to Redshift in python with dlt
- Load data from Microsoft SQL Server to Microsoft SQL Server in python with dlt
- Load data from Adobe Commerce (Magento) to Snowflake in python with dlt
- Load data from Oracle Database to Databricks in python with dlt
- Load data from Google Sheets to Azure Cloud Storage in python with dlt
- Load data from Fivetran to YugabyteDB in python with dlt
- Load data from HubSpot to BigQuery in python with dlt