Skip to main content

Load Capsule CRM Data to Azure Cloud Storage Using Python dlt

Need help deploying these pipelines, or figuring out how to run them in your data stack?

Join our Slack community or book a call with our support engineer Violetta.

Capsule CRM is a user-friendly customer relationship management (CRM) platform designed to help businesses manage their customer interactions and sales pipeline effectively. It offers features like contact management, task tracking, sales analytics, and workflow automation. This documentation provides a guide on how to load data from Capsule CRM to Azure Cloud Storage using the open-source python library dlt. Azure Cloud Storage allows you to store data in various formats such as JSONL, Parquet, or CSV, making it easy to create data lakes. This guide will help you streamline your sales processes, improve customer relationships, and boost overall productivity with a simple and intuitive interface. For more details on Capsule CRM, visit here.

dlt Key Features

  • Governance Support: dlt pipelines offer robust governance through metadata utilization, schema enforcement, and schema change alerts. Read more
  • Schema Enforcement and Curation: Ensure data consistency and quality by enforcing and curating schemas. Read more
  • Scaling and Finetuning: Configure and scale up pipelines with parallel processing and memory optimization options. Read more
  • Databricks Integration: Set up and use dlt with Databricks, including workspace and Unity Catalog configuration. Read more
  • Tutorial: Learn how to build a data pipeline using dlt with practical examples and foundational concepts. Read more

Getting started with your pipeline locally

OpenAPI Source Generator dlt-init-openapi

This walkthrough makes use of the dlt-init-openapi generator cli tool. You can read more about it here. The code generated by this tool uses the dlt rest_api verified source, docs for this are here.

0. Prerequisites

dlt and dlt-init-openapi requires Python 3.9 or higher. Additionally, you need to have the pip package manager installed, and we recommend using a virtual environment to manage your dependencies. You can learn more about preparing your computer for dlt in our installation reference.

1. Install dlt and dlt-init-openapi

First you need to install the dlt-init-openapi cli tool.

pip install dlt-init-openapi

The dlt-init-openapi cli is a powerful generator which you can use to turn any OpenAPI spec into a dlt source to ingest data from that api. The quality of the generator source is dependent on how well the API is designed and how accurate the OpenAPI spec you are using is. You may need to make tweaks to the generated code, you can learn more about this here.

# generate pipeline
# NOTE: add_limit adds a global limit, you can remove this later
# NOTE: you will need to select which endpoints to render, you
# can just hit Enter and all will be rendered.
dlt-init-openapi capsule_crm --url https://raw.githubusercontent.com/dlt-hub/openapi-specs/main/open_api_specs/Business/capsule_crm.yaml --global-limit 2
cd capsule_crm_pipeline
# install generated requirements
pip install -r requirements.txt

The last command will install the required dependencies for your pipeline. The dependencies are listed in the requirements.txt:

dlt>=0.4.12

You now have the following folder structure in your project:

capsule_crm_pipeline/
├── .dlt/
│ ├── config.toml # configs for your pipeline
│ └── secrets.toml # secrets for your pipeline
├── rest_api/ # The rest api verified source
│ └── ...
├── capsule_crm/
│ └── __init__.py # TODO: possibly tweak this file
├── capsule_crm_pipeline.py # your main pipeline script
├── requirements.txt # dependencies for your pipeline
└── .gitignore # ignore files for git (not required)

1.1. Tweak capsule_crm/__init__.py

This file contains the generated configuration of your rest_api. You can continue with the next steps and leave it as is, but you might want to come back here and make adjustments if you need your rest_api source set up in a different way. The generated file for the capsule_crm source will look like this:

Click to view full file (275 lines)

from typing import List

import dlt
from dlt.extract.source import DltResource
from rest_api import rest_api_source
from rest_api.typing import RESTAPIConfig


@dlt.source(name="capsule_crm_source", max_table_nesting=2)
def capsule_crm_source(
token: str = dlt.secrets.value,
base_url: str = dlt.config.value,
) -> List[DltResource]:

# source configuration
source_config: RESTAPIConfig = {
"client": {
"base_url": base_url,
"auth": {

"type": "bearer",
"token": token,

},
"paginator": {
"type":
"page_number",
"page_param":
"page",
"total_path":
"",
"maximum_page":
20,
},
},
"resources":
[
# https://developer.capsulecrm.com/v2/operations/Case#listCases
{
"name": "list_cases",
"table_name": "case",
"primary_key": "id",
"write_disposition": "merge",
"endpoint": {
"data_selector": "kases",
"path": "/api/v2/kases",
"params": {
# the parameters below can optionally be configured
# "since": "OPTIONAL_CONFIG",
# "perPage": "OPTIONAL_CONFIG",
# "embed": "OPTIONAL_CONFIG",

},
}
},
# https://developer.capsulecrm.com/v2/operations/Case#searchCases
{
"name": "search_cases",
"table_name": "case",
"primary_key": "id",
"write_disposition": "merge",
"endpoint": {
"data_selector": "kases",
"path": "/api/v2/kases/search",
"params": {
# the parameters below can optionally be configured
# "q": "OPTIONAL_CONFIG",
# "perPage": "OPTIONAL_CONFIG",
# "embed": "OPTIONAL_CONFIG",

},
}
},
# https://developer.capsulecrm.com/v2/operations/Case#showCase
{
"name": "show_case",
"table_name": "case",
"primary_key": "id",
"write_disposition": "merge",
"endpoint": {
"data_selector": "kase",
"path": "/api/v2/kases/{caseId}",
"params": {
"caseId": {
"type": "resolve",
"resource": "list_cases",
"field": "id",
},
# the parameters below can optionally be configured
# "embed": "OPTIONAL_CONFIG",

},
}
},
# https://developer.capsulecrm.com/v2/operations/Case#listCasesByParty
{
"name": "list_cases_by_party",
"table_name": "case",
"primary_key": "id",
"write_disposition": "merge",
"endpoint": {
"data_selector": "kases",
"path": "/api/v2/parties/{partyId}/kases",
"params": {
"partyId": {
"type": "resolve",
"resource": "list_parties",
"field": "id",
},
# the parameters below can optionally be configured
# "perPage": "OPTIONAL_CONFIG",
# "embed": "OPTIONAL_CONFIG",

},
}
},
# https://developer.capsulecrm.com/v2/operations/Opportunity#listOpportunities
{
"name": "list_opportunities",
"table_name": "opportunity",
"primary_key": "id",
"write_disposition": "merge",
"endpoint": {
"data_selector": "opportunities",
"path": "/api/v2/opportunities",
"params": {
# the parameters below can optionally be configured
# "since": "OPTIONAL_CONFIG",
# "perPage": "OPTIONAL_CONFIG",
# "embed": "OPTIONAL_CONFIG",

},
}
},
# https://developer.capsulecrm.com/v2/operations/Opportunity#searchOpportunities
{
"name": "search_opportunities",
"table_name": "opportunity",
"primary_key": "id",
"write_disposition": "merge",
"endpoint": {
"data_selector": "opportunities",
"path": "/api/v2/opportunities/search",
"params": {
# the parameters below can optionally be configured
# "q": "OPTIONAL_CONFIG",
# "perPage": "OPTIONAL_CONFIG",
# "embed": "OPTIONAL_CONFIG",

},
}
},
# https://developer.capsulecrm.com/v2/operations/Opportunity#showOpportunity
{
"name": "show_opportunity",
"table_name": "opportunity",
"primary_key": "id",
"write_disposition": "merge",
"endpoint": {
"data_selector": "opportunity",
"path": "/api/v2/opportunities/{opportunityId}",
"params": {
"opportunityId": {
"type": "resolve",
"resource": "list_opportunities",
"field": "id",
},
# the parameters below can optionally be configured
# "embed": "OPTIONAL_CONFIG",

},
}
},
# https://developer.capsulecrm.com/v2/operations/Opportunity#listOpportunitiesByParty
{
"name": "list_opportunities_by_party",
"table_name": "opportunity",
"primary_key": "id",
"write_disposition": "merge",
"endpoint": {
"data_selector": "opportunities",
"path": "/api/v2/parties/{partyId}/opportunities",
"params": {
"partyId": {
"type": "resolve",
"resource": "list_parties",
"field": "id",
},
# the parameters below can optionally be configured
# "perPage": "OPTIONAL_CONFIG",
# "embed": "OPTIONAL_CONFIG",

},
}
},
# https://developer.capsulecrm.com/v2/operations/Party#listParties
{
"name": "list_parties",
"table_name": "party",
"primary_key": "id",
"write_disposition": "merge",
"endpoint": {
"data_selector": "parties",
"path": "/api/v2/parties",
"params": {
# the parameters below can optionally be configured
# "since": "OPTIONAL_CONFIG",
# "perPage": "OPTIONAL_CONFIG",
# "embed": "OPTIONAL_CONFIG",

},
}
},
# https://developer.capsulecrm.com/v2/operations/Party#searchParties
{
"name": "search_parties",
"table_name": "party",
"primary_key": "id",
"write_disposition": "merge",
"endpoint": {
"data_selector": "parties",
"path": "/api/v2/parties/search",
"params": {
# the parameters below can optionally be configured
# "q": "OPTIONAL_CONFIG",
# "perPage": "OPTIONAL_CONFIG",
# "embed": "OPTIONAL_CONFIG",

},
}
},
# https://developer.capsulecrm.com/v2/operations/Party#showParty
{
"name": "show_party",
"table_name": "party",
"primary_key": "id",
"write_disposition": "merge",
"endpoint": {
"data_selector": "party",
"path": "/api/v2/parties/{partyId}",
"params": {
"partyId": {
"type": "resolve",
"resource": "list_parties",
"field": "id",
},
# the parameters below can optionally be configured
# "embed": "OPTIONAL_CONFIG",

},
}
},
# https://developer.capsulecrm.com/v2/operations/Task#listTasks
{
"name": "list_tasks",
"table_name": "task",
"primary_key": "id",
"write_disposition": "merge",
"endpoint": {
"data_selector": "tasks",
"path": "/api/v2/tasks",
"params": {
# the parameters below can optionally be configured
# "perPage": "OPTIONAL_CONFIG",
# "embed": "OPTIONAL_CONFIG",
# "status": "OPTIONAL_CONFIG",

},
}
},
]
}

return rest_api_source(source_config)

2. Configuring your source and destination credentials

info

dlt-init-openapi will try to detect which authentication mechanism (if any) is used by the API in question and add a placeholder in your secrets.toml.

  • If you know your API needs authentication, but none was detected, you can learn more about adding authentication to the rest_api here.
  • OAuth detection currently is not supported, but you can supply your own authentication mechanism as outlined here.

The dlt cli will have created a .dlt directory in your project folder. This directory contains a config.toml file and a secrets.toml file that you can use to configure your pipeline. The automatically created version of these files look like this:

generated config.toml


[runtime]
log_level="INFO"

[sources.capsule_crm]
# Base URL for the API
base_url = "https://api.capsulecrm.com"

generated secrets.toml


[sources.capsule_crm]
# secrets for your capsule_crm source
token = "FILL ME OUT" # TODO: fill in your credentials

2.1. Adjust the generated code to your usecase

Further help setting up your source and destinations

At this time, the dlt-init-openapi cli tool will always create pipelines that load to a local duckdb instance. Switching to a different destination is trivial, all you need to do is change the destination parameter in capsule_crm_pipeline.py to filesystem and supply the credentials as outlined in the destination doc linked below.

  • Read more about setting up the rest_api source in our docs.
  • Read more about setting up the Azure Cloud Storage destination in our docs.

The default filesystem destination is configured to connect to AWS S3. To load to Azure Cloud Storage, update the [destination.filesystem.credentials] section in your secrets.toml.

[destination.filesystem.credentials]
azure_storage_account_name="Please set me up!"
azure_storage_account_key="Please set me up!"

By default, the filesystem destination will store your files as JSONL. You can tell your pipeline to choose a different format with the loader_file_format property that you can set directly on the pipeline or via your config.toml. Available values are jsonl, parquet and csv:

[pipeline] # in ./dlt/config.toml
loader_file_format="parquet"

3. Running your pipeline for the first time

The dlt cli has also created a main pipeline script for you at capsule_crm_pipeline.py, as well as a folder capsule_crm that contains additional python files for your source. These files are your local copies which you can modify to fit your needs. In some cases you may find that you only need to do small changes to your pipelines or add some configurations, in other cases these files can serve as a working starting point for your code, but will need to be adjusted to do what you need them to do.

The main pipeline script will look something like this:


import dlt

from capsule_crm import capsule_crm_source


if __name__ == "__main__":
pipeline = dlt.pipeline(
pipeline_name="capsule_crm_pipeline",
destination='duckdb',
dataset_name="capsule_crm_data",
progress="log",
export_schema_path="schemas/export"
)
source = capsule_crm_source()
info = pipeline.run(source)
print(info)

Provided you have set up your credentials, you can run your pipeline like a regular python script with the following command:

python capsule_crm_pipeline.py

4. Inspecting your load result

You can now inspect the state of your pipeline with the dlt cli:

dlt pipeline capsule_crm_pipeline info

You can also use streamlit to inspect the contents of your Azure Cloud Storage destination for this:

# install streamlit
pip install streamlit
# run the streamlit app for your pipeline with the dlt cli:
dlt pipeline capsule_crm_pipeline show

5. Next steps to get your pipeline running in production

One of the beauties of dlt is, that we are just a plain Python library, so you can run your pipeline in any environment that supports Python >= 3.8. We have a couple of helpers and guides in our docs to get you there:

The Deploy section will show you how to deploy your pipeline to

  • Deploy with GitHub Actions: Learn how to set up and deploy your dlt pipeline using GitHub Actions for automated workflows. Github Actions
  • Deploy with Airflow: Follow this guide to deploy your dlt pipeline using Airflow and Google Composer for managed workflow orchestration. Airflow
  • Deploy with Google Cloud Functions: This tutorial walks you through deploying your dlt pipeline using Google Cloud Functions for serverless execution. Google cloud functions
  • Explore other deployment options: Discover various methods to deploy your dlt pipeline across different platforms and environments. and others...

The running in production section will teach you about:

  • How to Monitor your pipeline: Learn how to effectively monitor your dlt pipeline to ensure smooth operation and timely issue detection. How to Monitor your pipeline
  • Set up alerts: Configure alerts to stay informed about the status and potential issues of your dlt pipeline. Set up alerts
  • Set up tracing: Implement tracing to get detailed insights into your pipeline's performance and troubleshoot issues efficiently. And set up tracing

Available Sources and Resources

For this verified source the following sources and resources are available

Source Capsule CRM

Capsule CRM: Manage contacts, tasks, sales opportunities, and customer cases.

Resource NameWrite DispositionDescription
partyappendRefers to contacts or organizations that interact with the business
taskappendUsed to track and manage activities and to-dos within the CRM
opportunityappendRepresents potential sales or deals that are tracked through various stages
caseappendUsed for managing customer support issues or service requests

Additional pipeline guides

This demo works on codespaces. Codespaces is a development environment available for free to anyone with a Github account. You'll be asked to fork the demo repository and from there the README guides you with further steps.
The demo uses the Continue VSCode extension.

Off to codespaces!

DHelp

Ask a question

Welcome to "Codex Central", your next-gen help center, driven by OpenAI's GPT-4 model. It's more than just a forum or a FAQ hub – it's a dynamic knowledge base where coders can find AI-assisted solutions to their pressing problems. With GPT-4's powerful comprehension and predictive abilities, Codex Central provides instantaneous issue resolution, insightful debugging, and personalized guidance. Get your code running smoothly with the unparalleled support at Codex Central - coding help reimagined with AI prowess.