Skip to main content

Python Guide: Load Jira Data to Azure Cloud Storage with dlt

Need help deploying these pipelines, or figuring out how to run them in your data stack?

Join our Slack community or book a call with our support engineer Violetta.

This document provides technical guidance on using the dlt Python library to facilitate data transfer from Jira, a premier project management tool for agile teams, to Azure Cloud Storage, a Microsoft Azure service for creating datalakes. The dlt library enables users to load data from Jira into Azure Cloud Storage in formats such as JSONL, Parquet, or CSV. For more information about Jira, visit https://www.atlassian.com/software/jira.

dlt Key Features

  • Pipeline Metadata: dlt pipelines leverage metadata to provide governance capabilities. This includes load IDs, which consist of a timestamp and pipeline name, facilitating data lineage and traceability. Read more about it here.
  • Schema Enforcement and Curation: dlt empowers users to enforce and curate schemas, ensuring data consistency and quality. By adhering to predefined schemas, pipelines maintain data integrity and facilitate standardized data handling practices. Learn more here.
  • Schema Evolution: dlt enables proactive governance by alerting users to schema changes. When modifications occur in the source data’s schema, dlt notifies stakeholders. These governance features contribute to better data management practices, compliance adherence, and overall data governance. Read more about it here.
  • Scaling and Finetuning: dlt offers several mechanisms and configuration options to scale up and finetune pipelines. This includes running extraction, normalization, and load in parallel, writing sources and resources that are run in parallel via thread pools and async execution. Learn more here.
  • Advanced Deployment Options: dlt provides advanced deployment options such as deploying from a branch of the verified-sources repo or from another repo. This flexibility allows users to customize their deployment process. You can find more information here.

Getting started with your pipeline locally

0. Prerequisites

dlt requires Python 3.8 or higher. Additionally, you need to have the pip package manager installed, and we recommend using a virtual environment to manage your dependencies. You can learn more about preparing your computer for dlt in our installation reference.

1. Install dlt

First you need to install the dlt library with the correct extras for Azure Cloud Storage:

pip install "dlt[filesystem]"

The dlt cli has a useful command to get you started with any combination of source and destination. For this example, we want to load data from Jira to Azure Cloud Storage. You can run the following commands to create a starting point for loading data from Jira to Azure Cloud Storage:

# create a new directory
mkdir jira_pipeline
cd jira_pipeline
# initialize a new pipeline with your source and destination
dlt init jira filesystem
# install the required dependencies
pip install -r requirements.txt

The last command will install the required dependencies for your pipeline. The dependencies are listed in the requirements.txt:

dlt[filesystem]>=0.3.25

You now have the following folder structure in your project:

jira_pipeline/
├── .dlt/
│ ├── config.toml # configs for your pipeline
│ └── secrets.toml # secrets for your pipeline
├── jira/ # folder with source specific files
│ └── ...
├── jira_pipeline.py # your main pipeline script
├── requirements.txt # dependencies for your pipeline
└── .gitignore # ignore files for git (not required)

2. Configuring your source and destination credentials

The dlt cli will have created a .dlt directory in your project folder. This directory contains a config.toml file and a secrets.toml file that you can use to configure your pipeline. The automatically created version of these files look like this:

generated config.toml

# put your configuration values here

[runtime]
log_level="WARNING" # the system log level of dlt
# use the dlthub_telemetry setting to enable/disable anonymous usage data reporting, see https://dlthub.com/docs/telemetry
dlthub_telemetry = true

generated secrets.toml

# put your secret values and credentials here. do not share this file and do not push it to github

[sources.jira]
subdomain = "subdomain" # please set me up!
email = "email" # please set me up!
api_token = "api_token" # please set me up!

[destination.filesystem]
dataset_name = "dataset_name" # please set me up!
bucket_url = "bucket_url" # please set me up!

[destination.filesystem.credentials]
aws_access_key_id = "aws_access_key_id" # please set me up!
aws_secret_access_key = "aws_secret_access_key" # please set me up!

2.1. Adjust the generated code to your usecase

Further help setting up your source and destinations
  • Read more about setting up the Jira source in our docs.
  • Read more about setting up the Azure Cloud Storage destination in our docs.

The default filesystem destination is configured to connect to AWS S3. To load to Azure Cloud Storage, update the [destination.filesystem.credentials] section in your secrets.toml.

[destination.filesystem.credentials]
azure_storage_account_name="Please set me up!"
azure_storage_account_key="Please set me up!"

By default, the filesystem destination will store your files as JSONL. You can tell your pipeline to choose a different format with the loader_file_format property that you can set directly on the pipeline or via your config.toml. Available values are jsonl, parquet and csv:

[pipeline] # in ./dlt/config.toml
loader_file_format="parquet"

3. Running your pipeline for the first time

The dlt cli has also created a main pipeline script for you at jira_pipeline.py, as well as a folder jira that contains additional python files for your source. These files are your local copies which you can modify to fit your needs. In some cases you may find that you only need to do small changes to your pipelines or add some configurations, in other cases these files can serve as a working starting point for your code, but will need to be adjusted to do what you need them to do.

The main pipeline script will look something like this:


from typing import List, Optional

import dlt
from jira import jira, jira_search


def load(endpoints: Optional[List[str]] = None) -> None:
"""
Load data from specified Jira endpoints into a dataset.

Args:
endpoints: A list of Jira endpoints. If not provided, defaults to all resources.
"""
if not endpoints:
endpoints = list(jira().resources.keys())

pipeline = dlt.pipeline(
pipeline_name="jira_pipeline", destination='filesystem', dataset_name="jira"
)

load_info = pipeline.run(jira().with_resources(*endpoints))

print(f"Load Information: {load_info}")


def load_query_data(queries: List[str]) -> None:
"""
Load issues from specified Jira queries into a dataset.

Args:
queries: A list of JQL queries.
"""
pipeline = dlt.pipeline(
pipeline_name="jira_search_pipeline",
destination='filesystem',
dataset_name="jira_search",
)

load_info = pipeline.run(jira_search().issues(jql_queries=queries))

print(f"Load Information: {load_info}")


if __name__ == "__main__":
# Add your desired endpoints to the list 'endpoints'
load(endpoints=None)

queries = [
"created >= -30d order by created DESC",
'project = KAN AND status = "In Progress" order by created DESC',
]

load_query_data(queries=queries)

Provided you have set up your credentials, you can run your pipeline like a regular python script with the following command:

python jira_pipeline.py

4. Inspecting your load result

You can now inspect the state of your pipeline with the dlt cli:

dlt pipeline jira_pipeline info

You can also use streamlit to inspect the contents of your Azure Cloud Storage destination for this:

# install streamlit
pip install streamlit
# run the streamlit app for your pipeline with the dlt cli:
dlt pipeline jira_pipeline show

5. Next steps to get your pipeline running in production

One of the beauties of dlt is, that we are just a plain Python library, so you can run your pipeline in any environment that supports Python >= 3.8. We have a couple of helpers and guides in our docs to get you there:

The Deploy section will show you how to deploy your pipeline to

  • Deploy with Github Actions: Learn how to set up and deploy your dlt pipeline using Github Actions for CI/CD. Follow the guide here.
  • Deploy with Airflow and Google Composer: Discover how to deploy your dlt pipeline using Airflow and Google Composer. Detailed instructions can be found here.
  • Deploy with Google Cloud Functions: Explore how to deploy your dlt pipeline using Google Cloud Functions. Check out the guide here.
  • Other Deployment Methods: Find additional methods and detailed walkthroughs on deploying dlt pipelines here.

The running in production section will teach you about:

  • How to Monitor your pipeline: Learn how to effectively monitor your dlt pipeline in production to ensure smooth operation and quickly identify any issues. How to Monitor your pipeline
  • Set up alerts: Configure alerts to get notified about important events and errors in your dlt pipeline, enabling you to respond promptly. Set up alerts
  • And set up tracing: Implement tracing to gain detailed insights into the execution of your dlt pipeline, helping you understand its performance and behavior. And set up tracing

Available Sources and Resources

For this verified source the following sources and resources are available

Source jira

The Jira source provides data on project management tasks, including details on issues, users, workflows, and projects.

Resource NameWrite DispositionDescription
issuesreplaceIndividual pieces of work to be completed. Contains various fields such as assignee, comments, created time, reporter, status, summary, updated time, etc.
projectsreplaceA collection of tasks that need to be completed to achieve a certain outcome. Contains fields such as avatar URL, description, ID, key, lead, name, etc.
usersreplaceAdministrator of a given project. Contains fields such as account ID, account type, avatar URL, display name, email address, etc.
workflowsreplaceThe key aspect of managing and tracking the progress of issues or tasks within a project. Contains fields such as created time, description, ID, updated time, etc.

Additional pipeline guides

This demo works on codespaces. Codespaces is a development environment available for free to anyone with a Github account. You'll be asked to fork the demo repository and from there the README guides you with further steps.
The demo uses the Continue VSCode extension.

Off to codespaces!

DHelp

Ask a question

Welcome to "Codex Central", your next-gen help center, driven by OpenAI's GPT-4 model. It's more than just a forum or a FAQ hub – it's a dynamic knowledge base where coders can find AI-assisted solutions to their pressing problems. With GPT-4's powerful comprehension and predictive abilities, Codex Central provides instantaneous issue resolution, insightful debugging, and personalized guidance. Get your code running smoothly with the unparalleled support at Codex Central - coding help reimagined with AI prowess.