Skip to main content

Loading Jira Data to Local Filesystem Using Python and dlt

Need help deploying these pipelines, or figuring out how to run them in your data stack?

Join our Slack community or book a call with our support engineer Violetta.

Loading data from Jira to The Local Filesystem has never been easier with the open-source Python library, dlt. Jira is a leading project management tool for agile teams, enabling you to plan, track, and release top-notch software. By using dlt, you can seamlessly extract data from Jira and store it in The Local Filesystem. This allows you to create data lakes in local folders, storing data in formats like JSONL, Parquet, or CSV. For more details on Jira, visit here.

dlt Key Features

  • Easy to get started: dlt is a Python library that is easy to use and understand. It is designed to be simple to use and easy to understand. Type pip install dlt and you are ready to go. Learn more
  • Scalable data extraction: dlt offers scalable data extraction by leveraging iterators, chunking, and parallelization techniques. This approach allows for efficient processing of large datasets. Learn more
  • Implicit extraction DAGs: Automatically generates an extraction DAG based on the dependencies identified between the data sources and their transformations. Learn more
  • Securely handling secrets: dlt provides methods to securely handle secrets and sensitive information within your data pipelines. Learn more
  • Incremental loading and deduplication: Allows for incremental loading of new data and deduplication of existing data, ensuring efficient and up-to-date data pipelines. Learn more

Getting started with your pipeline locally

0. Prerequisites

dlt requires Python 3.8 or higher. Additionally, you need to have the pip package manager installed, and we recommend using a virtual environment to manage your dependencies. You can learn more about preparing your computer for dlt in our installation reference.

1. Install dlt

First you need to install the dlt library with the correct extras for The Local Filesystem:

pip install "dlt[filesystem]"

The dlt cli has a useful command to get you started with any combination of source and destination. For this example, we want to load data from Jira to The Local Filesystem. You can run the following commands to create a starting point for loading data from Jira to The Local Filesystem:

# create a new directory
mkdir jira_pipeline
cd jira_pipeline
# initialize a new pipeline with your source and destination
dlt init jira filesystem
# install the required dependencies
pip install -r requirements.txt

The last command will install the required dependencies for your pipeline. The dependencies are listed in the requirements.txt:

dlt[filesystem]>=0.3.25

You now have the following folder structure in your project:

jira_pipeline/
├── .dlt/
│ ├── config.toml # configs for your pipeline
│ └── secrets.toml # secrets for your pipeline
├── jira/ # folder with source specific files
│ └── ...
├── jira_pipeline.py # your main pipeline script
├── requirements.txt # dependencies for your pipeline
└── .gitignore # ignore files for git (not required)

2. Configuring your source and destination credentials

The dlt cli will have created a .dlt directory in your project folder. This directory contains a config.toml file and a secrets.toml file that you can use to configure your pipeline. The automatically created version of these files look like this:

generated config.toml

# put your configuration values here

[runtime]
log_level="WARNING" # the system log level of dlt
# use the dlthub_telemetry setting to enable/disable anonymous usage data reporting, see https://dlthub.com/docs/telemetry
dlthub_telemetry = true

generated secrets.toml

# put your secret values and credentials here. do not share this file and do not push it to github

[sources.jira]
subdomain = "subdomain" # please set me up!
email = "email" # please set me up!
api_token = "api_token" # please set me up!

[destination.filesystem]
dataset_name = "dataset_name" # please set me up!
bucket_url = "bucket_url" # please set me up!

[destination.filesystem.credentials]
aws_access_key_id = "aws_access_key_id" # please set me up!
aws_secret_access_key = "aws_secret_access_key" # please set me up!

2.1. Adjust the generated code to your usecase

Further help setting up your source and destinations
  • Read more about setting up the Jira source in our docs.
  • Read more about setting up the The Local Filesystem destination in our docs.

The default filesystem destination is configured to connect to AWS S3. To load to a local directory, remove the [destination.filesystem.credentials] section from your secrets.toml and provide a local filepath as the bucket_url.

[destination.filesystem] # in ./dlt/secrets.toml
bucket_url="file://path/to/my/output"

By default, the filesystem destination will store your files as JSONL. You can tell your pipeline to choose a different format with the loader_file_format property that you can set directly on the pipeline or via your config.toml. Available values are jsonl, parquet and csv:

[pipeline] # in ./dlt/config.toml
loader_file_format="parquet"

3. Running your pipeline for the first time

The dlt cli has also created a main pipeline script for you at jira_pipeline.py, as well as a folder jira that contains additional python files for your source. These files are your local copies which you can modify to fit your needs. In some cases you may find that you only need to do small changes to your pipelines or add some configurations, in other cases these files can serve as a working starting point for your code, but will need to be adjusted to do what you need them to do.

The main pipeline script will look something like this:


from typing import List, Optional

import dlt
from jira import jira, jira_search


def load(endpoints: Optional[List[str]] = None) -> None:
"""
Load data from specified Jira endpoints into a dataset.

Args:
endpoints: A list of Jira endpoints. If not provided, defaults to all resources.
"""
if not endpoints:
endpoints = list(jira().resources.keys())

pipeline = dlt.pipeline(
pipeline_name="jira_pipeline", destination='filesystem', dataset_name="jira"
)

load_info = pipeline.run(jira().with_resources(*endpoints))

print(f"Load Information: {load_info}")


def load_query_data(queries: List[str]) -> None:
"""
Load issues from specified Jira queries into a dataset.

Args:
queries: A list of JQL queries.
"""
pipeline = dlt.pipeline(
pipeline_name="jira_search_pipeline",
destination='filesystem',
dataset_name="jira_search",
)

load_info = pipeline.run(jira_search().issues(jql_queries=queries))

print(f"Load Information: {load_info}")


if __name__ == "__main__":
# Add your desired endpoints to the list 'endpoints'
load(endpoints=None)

queries = [
"created >= -30d order by created DESC",
'project = KAN AND status = "In Progress" order by created DESC',
]

load_query_data(queries=queries)

Provided you have set up your credentials, you can run your pipeline like a regular python script with the following command:

python jira_pipeline.py

4. Inspecting your load result

You can now inspect the state of your pipeline with the dlt cli:

dlt pipeline jira_pipeline info

You can also use streamlit to inspect the contents of your The Local Filesystem destination for this:

# install streamlit
pip install streamlit
# run the streamlit app for your pipeline with the dlt cli:
dlt pipeline jira_pipeline show

5. Next steps to get your pipeline running in production

One of the beauties of dlt is, that we are just a plain Python library, so you can run your pipeline in any environment that supports Python >= 3.8. We have a couple of helpers and guides in our docs to get you there:

The Deploy section will show you how to deploy your pipeline to

  • Deploy with GitHub Actions: Learn how to automate your pipeline deployment using GitHub Actions. Follow the step-by-step guide here.
  • Deploy with Airflow and Google Composer: Deploy your pipeline using Airflow in a managed environment with Google Composer. Detailed instructions can be found here.
  • Deploy with Google Cloud Functions: Set up serverless deployment of your pipeline using Google Cloud Functions. Check out the guide here.
  • Explore other deployment options: Discover various other methods to deploy your dlt pipeline. Find more information here.

The running in production section will teach you about:

  • How to Monitor your pipeline: Learn how to effectively monitor your dlt pipeline to ensure smooth operations and quickly identify any issues. How to Monitor your pipeline
  • Set up alerts: Configure alerts to stay informed about your pipeline's status and react promptly to any anomalies or errors. Set up alerts
  • Set up tracing: Implement tracing to gain detailed insights into your pipeline's performance and troubleshoot any issues efficiently. And set up tracing

Available Sources and Resources

For this verified source the following sources and resources are available

Source jira

The Jira source provides data on project management tasks, including details on issues, users, workflows, and projects.

Resource NameWrite DispositionDescription
issuesreplaceIndividual pieces of work to be completed. Contains various fields such as assignee, comments, created time, reporter, status, summary, updated time, etc.
projectsreplaceA collection of tasks that need to be completed to achieve a certain outcome. Contains fields such as avatar URL, description, ID, key, lead, name, etc.
usersreplaceAdministrator of a given project. Contains fields such as account ID, account type, avatar URL, display name, email address, etc.
workflowsreplaceThe key aspect of managing and tracking the progress of issues or tasks within a project. Contains fields such as created time, description, ID, updated time, etc.

Additional pipeline guides

This demo works on codespaces. Codespaces is a development environment available for free to anyone with a Github account. You'll be asked to fork the demo repository and from there the README guides you with further steps.
The demo uses the Continue VSCode extension.

Off to codespaces!

DHelp

Ask a question

Welcome to "Codex Central", your next-gen help center, driven by OpenAI's GPT-4 model. It's more than just a forum or a FAQ hub – it's a dynamic knowledge base where coders can find AI-assisted solutions to their pressing problems. With GPT-4's powerful comprehension and predictive abilities, Codex Central provides instantaneous issue resolution, insightful debugging, and personalized guidance. Get your code running smoothly with the unparalleled support at Codex Central - coding help reimagined with AI prowess.