Loading Clubhouse Data to MotherDuck Using dlt in Python
Join our Slack community or book a call with our support engineer Violetta.
Clubhouse
is a social media audio app that provides real-time virtual rooms where users can communicate via audio. This documentation will guide you on how to load data from Clubhouse
to MotherDuck
using the open-source Python library called dlt
. MotherDuck
is a fast in-process analytical database that supports a feature-rich SQL dialect and integrates deeply with client APIs. By following this guide, you will learn how to set up and configure dlt
, fetch data from Clubhouse
, and load it into MotherDuck
. For more information about Clubhouse
, visit their website.
dlt
Key Features
- MotherDuck Integration: Easily integrate with MotherDuck using
dlt
. Learn more at MotherDuck integration. - Pipeline Metadata for Governance: Utilize pipeline metadata for robust governance support. Discover more about pipeline metadata.
- Schema Enforcement and Curation: Ensure data consistency and quality with schema enforcement. Read more about schema enforcement.
- Performance Optimization: Scale and fine-tune your pipelines with various configuration options. Explore performance optimization.
- DBT Support: Integrate seamlessly with dbt via the dbt-duckdb package. Check out dbt support.
Getting started with your pipeline locally
dlt-init-openapi
0. Prerequisites
dlt
and dlt-init-openapi
requires Python 3.9 or higher. Additionally, you need to have the pip
package manager installed, and we recommend using a virtual environment to manage your dependencies. You can learn more about preparing your computer for dlt in our installation reference.
1. Install dlt and dlt-init-openapi
First you need to install the dlt-init-openapi
cli tool.
pip install dlt-init-openapi
The dlt-init-openapi
cli is a powerful generator which you can use to turn any OpenAPI spec into a dlt
source to ingest data from that api. The quality of the generator source is dependent on how well the API is designed and how accurate the OpenAPI spec you are using is. You may need to make tweaks to the generated code, you can learn more about this here.
# generate pipeline
# NOTE: add_limit adds a global limit, you can remove this later
# NOTE: you will need to select which endpoints to render, you
# can just hit Enter and all will be rendered.
dlt-init-openapi clubhouse --url https://raw.githubusercontent.com/dlt-hub/openapi-specs/main/open_api_specs/Business/clubhouse_api.yaml --global-limit 2
cd clubhouse_pipeline
# install generated requirements
pip install -r requirements.txt
The last command will install the required dependencies for your pipeline. The dependencies are listed in the requirements.txt
:
dlt>=0.4.12
You now have the following folder structure in your project:
clubhouse_pipeline/
├── .dlt/
│ ├── config.toml # configs for your pipeline
│ └── secrets.toml # secrets for your pipeline
├── rest_api/ # The rest api verified source
│ └── ...
├── clubhouse/
│ └── __init__.py # TODO: possibly tweak this file
├── clubhouse_pipeline.py # your main pipeline script
├── requirements.txt # dependencies for your pipeline
└── .gitignore # ignore files for git (not required)
1.1. Tweak clubhouse/__init__.py
This file contains the generated configuration of your rest_api. You can continue with the next steps and leave it as is, but you might want to come back here and make adjustments if you need your rest_api
source set up in a different way. The generated file for the clubhouse source will look like this:
Click to view full file (133 lines)
from typing import List
import dlt
from dlt.extract.source import DltResource
from rest_api import rest_api_source
from rest_api.typing import RESTAPIConfig
@dlt.source(name="clubhouse_source", max_table_nesting=2)
def clubhouse_source(
base_url: str = dlt.config.value,
) -> List[DltResource]:
# source configuration
source_config: RESTAPIConfig = {
"client": {
"base_url": base_url,
"paginator": {
"type":
"page_number",
"page_param":
"page",
"total_path":
"",
"maximum_page":
20,
},
},
"resources":
[
{
"name": "check_for_update",
"table_name": "check_for_update",
"endpoint": {
"path": "/check_for_update",
"params": {
# the parameters below can optionally be configured
# "is_testflight": "OPTIONAL_CONFIG",
},
}
},
{
"name": "get_actionable_notification",
"table_name": "get_actionable_notification",
"endpoint": {
"path": "/get_actionable_notifications",
}
},
{
"name": "get_all_topic",
"table_name": "get_all_topic",
"endpoint": {
"path": "/get_all_topics",
}
},
{
"name": "get_channel",
"table_name": "get_channel",
"endpoint": {
"path": "/get_channels",
}
},
{
"name": "get_event",
"table_name": "get_event",
"endpoint": {
"path": "/get_events",
"params": {
# the parameters below can optionally be configured
# "is_filtered": "OPTIONAL_CONFIG",
# "page_size": "OPTIONAL_CONFIG",
},
}
},
{
"name": "get_notification",
"table_name": "get_notification",
"endpoint": {
"path": "/get_notifications",
"params": {
# the parameters below can optionally be configured
# "page_size": "OPTIONAL_CONFIG",
},
}
},
{
"name": "get_setting",
"table_name": "get_setting",
"endpoint": {
"path": "/get_settings",
}
},
{
"name": "get_suggested_follows_all",
"table_name": "get_suggested_follows_all",
"endpoint": {
"path": "/get_suggested_follows_all",
"params": {
# the parameters below can optionally be configured
# "in_onboarding": "OPTIONAL_CONFIG",
# "page_size": "OPTIONAL_CONFIG",
},
}
},
{
"name": "get_users_for_topic",
"table_name": "get_users_for_topic",
"endpoint": {
"path": "/get_users_for_topic",
"params": {
# the parameters below can optionally be configured
# "topic_id": "OPTIONAL_CONFIG",
# "page_size": "OPTIONAL_CONFIG",
},
}
},
{
"name": "get_welcome_channel",
"table_name": "get_welcome_channel",
"endpoint": {
"path": "/get_welcome_channel",
}
},
]
}
return rest_api_source(source_config)
2. Configuring your source and destination credentials
dlt-init-openapi
will try to detect which authentication mechanism (if any) is used by the API in question and add a placeholder in your secrets.toml
.
The dlt
cli will have created a .dlt
directory in your project folder. This directory contains a config.toml
file and a secrets.toml
file that you can use to configure your pipeline. The automatically created version of these files look like this:
generated config.toml
[runtime]
log_level="INFO"
[sources.clubhouse]
# Base URL for the API
base_url = "https://www.clubhouseapi.com/api/"
generated secrets.toml
[sources.clubhouse]
# secrets for your clubhouse source
# example_api_key = "example value"
2.1. Adjust the generated code to your usecase
At this time, the dlt-init-openapi
cli tool will always create pipelines that load to a local duckdb
instance. Switching to a different destination is trivial, all you need to do is change the destination
parameter in clubhouse_pipeline.py
to motherduck and supply the credentials as outlined in the destination doc linked below.
3. Running your pipeline for the first time
The dlt
cli has also created a main pipeline script for you at clubhouse_pipeline.py
, as well as a folder clubhouse
that contains additional python files for your source. These files are your local copies which you can modify to fit your needs. In some cases you may find that you only need to do small changes to your pipelines or add some configurations, in other cases these files can serve as a working starting point for your code, but will need to be adjusted to do what you need them to do.
The main pipeline script will look something like this:
import dlt
from clubhouse import clubhouse_source
if __name__ == "__main__":
pipeline = dlt.pipeline(
pipeline_name="clubhouse_pipeline",
destination='duckdb',
dataset_name="clubhouse_data",
progress="log",
export_schema_path="schemas/export"
)
source = clubhouse_source()
info = pipeline.run(source)
print(info)
Provided you have set up your credentials, you can run your pipeline like a regular python script with the following command:
python clubhouse_pipeline.py
4. Inspecting your load result
You can now inspect the state of your pipeline with the dlt
cli:
dlt pipeline clubhouse_pipeline info
You can also use streamlit to inspect the contents of your MotherDuck
destination for this:
# install streamlit
pip install streamlit
# run the streamlit app for your pipeline with the dlt cli:
dlt pipeline clubhouse_pipeline show
5. Next steps to get your pipeline running in production
One of the beauties of dlt
is, that we are just a plain Python library, so you can run your pipeline in any environment that supports Python >= 3.8. We have a couple of helpers and guides in our docs to get you there:
The Deploy section will show you how to deploy your pipeline to
- Deploy with GitHub Actions: Learn how to deploy a pipeline using GitHub Actions, a CI/CD runner that you can use for free. Read more
- Deploy with Airflow and Google Composer: Follow this guide to deploy a pipeline using Airflow and Google Composer, a managed Airflow environment provided by Google. Read more
- Deploy with Google Cloud Functions: Discover how to deploy a pipeline with Google Cloud Functions, a serverless execution environment. Read more
- Explore other deployment options: Check out various other methods to deploy your pipeline, including different cloud services and platforms. Read more
The running in production section will teach you about:
- How to Monitor your pipeline: Learn how to effectively monitor your
dlt
pipeline in production to ensure smooth operation and quick identification of issues. Read more - Set up alerts: Set up alerts to get notified about important events and issues in your
dlt
pipeline, ensuring you can respond promptly. Read more - And set up tracing: Implement tracing to get detailed insights into the execution of your
dlt
pipeline, helping you to diagnose and troubleshoot problems efficiently. Read more
Available Sources and Resources
For this verified source the following sources and resources are available
Source Clubhouse
Clubhouse source provides notifications, user suggestions, events, topics, settings, updates, and channels data.
Resource Name | Write Disposition | Description |
---|---|---|
get_notification | append | Retrieves notifications for the user. |
get_suggested_follows_all | append | Fetches a list of all suggested users to follow. |
get_event | append | Retrieves details about a specific event. |
get_users_for_topic | append | Gets a list of users associated with a specific topic. |
get_all_topic | append | Retrieves all available topics on the platform. |
get_setting | append | Fetches user settings and preferences. |
get_actionable_notification | append | Retrieves actionable notifications that require user interaction. |
check_for_update | append | Checks if there are any updates available for the app. |
get_channel | append | Retrieves information about a specific audio channel. |
get_welcome_channel | append | Fetches details about the welcome channel for new users. |
Additional pipeline guides
- Load data from Coinbase to YugabyteDB in python with dlt
- Load data from Slack to CockroachDB in python with dlt
- Load data from Bitbucket to EDB BigAnimal in python with dlt
- Load data from Fivetran to Dremio in python with dlt
- Load data from Google Analytics to AlloyDB in python with dlt
- Load data from X to EDB BigAnimal in python with dlt
- Load data from Crypt API to Timescale in python with dlt
- Load data from GitHub to Azure Cloud Storage in python with dlt
- Load data from Klaviyo to Azure Synapse in python with dlt
- Load data from GitHub to BigQuery in python with dlt