Load Clubhouse
Data to Google Cloud Storage
Using dlt
in Python
Join our Slack community or book a call with our support engineer Violetta.
Loading data from Clubhouse
to Google Cloud Storage
can be efficiently managed using the open-source Python library dlt
. Clubhouse
is a social media audio app that allows users to communicate in real-time virtual rooms via audio. On the other hand, Google Cloud Storage
serves as a robust destination for storing data on the Google Cloud Platform, facilitating the creation of data lakes. With dlt
, you can upload data in formats like JSONL, Parquet, or CSV, ensuring seamless integration and management. For more details on Clubhouse
, visit here.
dlt
Key Features
- Pipeline Metadata:
dlt
pipelines leverage metadata to provide governance capabilities. This metadata includes load IDs, which consist of a timestamp and pipeline name. Load IDs enable incremental transformations and data vaulting by tracking data loads and facilitating data lineage and traceability. Read more about lineage. - Schema Enforcement and Curation:
dlt
empowers users to enforce and curate schemas, ensuring data consistency and quality. Schemas define the structure of normalized data and guide the processing and loading of data. By adhering to predefined schemas, pipelines maintain data integrity and facilitate standardized data handling practices. Read more: Adjust a schema docs. - Schema Evolution:
dlt
enables proactive governance by alerting users to schema changes. When modifications occur in the source data’s schema, such as table or column alterations,dlt
notifies stakeholders, allowing them to take necessary actions, such as reviewing and validating the changes, updating downstream processes, or performing impact analysis. - Scaling and Finetuning:
dlt
offers several mechanisms and configuration options to scale up and finetune pipelines, including running extraction, normalization, and load in parallel, and writing sources and resources that run in parallel via thread pools and async execution. Read more about performance. - Staging Support: Snowflake supports S3 and GCS as file staging destinations.
dlt
will upload files in the parquet format to the bucket provider and will ask Snowflake to copy their data directly into the DB. Read more about Snowflake and Amazon S3 and Snowflake and Google Cloud Storage.
Getting started with your pipeline locally
dlt-init-openapi
0. Prerequisites
dlt
and dlt-init-openapi
requires Python 3.9 or higher. Additionally, you need to have the pip
package manager installed, and we recommend using a virtual environment to manage your dependencies. You can learn more about preparing your computer for dlt in our installation reference.
1. Install dlt and dlt-init-openapi
First you need to install the dlt-init-openapi
cli tool.
pip install dlt-init-openapi
The dlt-init-openapi
cli is a powerful generator which you can use to turn any OpenAPI spec into a dlt
source to ingest data from that api. The quality of the generator source is dependent on how well the API is designed and how accurate the OpenAPI spec you are using is. You may need to make tweaks to the generated code, you can learn more about this here.
# generate pipeline
# NOTE: add_limit adds a global limit, you can remove this later
# NOTE: you will need to select which endpoints to render, you
# can just hit Enter and all will be rendered.
dlt-init-openapi clubhouse --url https://raw.githubusercontent.com/dlt-hub/openapi-specs/main/open_api_specs/Business/clubhouse_api.yaml --global-limit 2
cd clubhouse_pipeline
# install generated requirements
pip install -r requirements.txt
The last command will install the required dependencies for your pipeline. The dependencies are listed in the requirements.txt
:
dlt>=0.4.12
You now have the following folder structure in your project:
clubhouse_pipeline/
├── .dlt/
│ ├── config.toml # configs for your pipeline
│ └── secrets.toml # secrets for your pipeline
├── rest_api/ # The rest api verified source
│ └── ...
├── clubhouse/
│ └── __init__.py # TODO: possibly tweak this file
├── clubhouse_pipeline.py # your main pipeline script
├── requirements.txt # dependencies for your pipeline
└── .gitignore # ignore files for git (not required)
1.1. Tweak clubhouse/__init__.py
This file contains the generated configuration of your rest_api. You can continue with the next steps and leave it as is, but you might want to come back here and make adjustments if you need your rest_api
source set up in a different way. The generated file for the clubhouse source will look like this:
Click to view full file (133 lines)
from typing import List
import dlt
from dlt.extract.source import DltResource
from rest_api import rest_api_source
from rest_api.typing import RESTAPIConfig
@dlt.source(name="clubhouse_source", max_table_nesting=2)
def clubhouse_source(
base_url: str = dlt.config.value,
) -> List[DltResource]:
# source configuration
source_config: RESTAPIConfig = {
"client": {
"base_url": base_url,
"paginator": {
"type":
"page_number",
"page_param":
"page",
"total_path":
"",
"maximum_page":
20,
},
},
"resources":
[
{
"name": "check_for_update",
"table_name": "check_for_update",
"endpoint": {
"path": "/check_for_update",
"params": {
# the parameters below can optionally be configured
# "is_testflight": "OPTIONAL_CONFIG",
},
}
},
{
"name": "get_actionable_notification",
"table_name": "get_actionable_notification",
"endpoint": {
"path": "/get_actionable_notifications",
}
},
{
"name": "get_all_topic",
"table_name": "get_all_topic",
"endpoint": {
"path": "/get_all_topics",
}
},
{
"name": "get_channel",
"table_name": "get_channel",
"endpoint": {
"path": "/get_channels",
}
},
{
"name": "get_event",
"table_name": "get_event",
"endpoint": {
"path": "/get_events",
"params": {
# the parameters below can optionally be configured
# "is_filtered": "OPTIONAL_CONFIG",
# "page_size": "OPTIONAL_CONFIG",
},
}
},
{
"name": "get_notification",
"table_name": "get_notification",
"endpoint": {
"path": "/get_notifications",
"params": {
# the parameters below can optionally be configured
# "page_size": "OPTIONAL_CONFIG",
},
}
},
{
"name": "get_setting",
"table_name": "get_setting",
"endpoint": {
"path": "/get_settings",
}
},
{
"name": "get_suggested_follows_all",
"table_name": "get_suggested_follows_all",
"endpoint": {
"path": "/get_suggested_follows_all",
"params": {
# the parameters below can optionally be configured
# "in_onboarding": "OPTIONAL_CONFIG",
# "page_size": "OPTIONAL_CONFIG",
},
}
},
{
"name": "get_users_for_topic",
"table_name": "get_users_for_topic",
"endpoint": {
"path": "/get_users_for_topic",
"params": {
# the parameters below can optionally be configured
# "topic_id": "OPTIONAL_CONFIG",
# "page_size": "OPTIONAL_CONFIG",
},
}
},
{
"name": "get_welcome_channel",
"table_name": "get_welcome_channel",
"endpoint": {
"path": "/get_welcome_channel",
}
},
]
}
return rest_api_source(source_config)
2. Configuring your source and destination credentials
dlt-init-openapi
will try to detect which authentication mechanism (if any) is used by the API in question and add a placeholder in your secrets.toml
.
The dlt
cli will have created a .dlt
directory in your project folder. This directory contains a config.toml
file and a secrets.toml
file that you can use to configure your pipeline. The automatically created version of these files look like this:
generated config.toml
[runtime]
log_level="INFO"
[sources.clubhouse]
# Base URL for the API
base_url = "https://www.clubhouseapi.com/api/"
generated secrets.toml
[sources.clubhouse]
# secrets for your clubhouse source
# example_api_key = "example value"
2.1. Adjust the generated code to your usecase
At this time, the dlt-init-openapi
cli tool will always create pipelines that load to a local duckdb
instance. Switching to a different destination is trivial, all you need to do is change the destination
parameter in clubhouse_pipeline.py
to filesystem and supply the credentials as outlined in the destination doc linked below.
The default filesystem destination is configured to connect to AWS S3. To load to Google Cloud Storage, update the [destination.filesystem.credentials]
section in your secrets.toml
.
[destination.filesystem.credentials]
client_email="Please set me up!"
private_key="Please set me up!"
project_id="Please set me up!"
By default, the filesystem destination will store your files as JSONL
. You can tell your pipeline to choose a different format with the loader_file_format
property that you can set directly on the pipeline or via your config.toml
. Available values are jsonl
, parquet
and csv
:
[pipeline] # in ./dlt/config.toml
loader_file_format="parquet"
3. Running your pipeline for the first time
The dlt
cli has also created a main pipeline script for you at clubhouse_pipeline.py
, as well as a folder clubhouse
that contains additional python files for your source. These files are your local copies which you can modify to fit your needs. In some cases you may find that you only need to do small changes to your pipelines or add some configurations, in other cases these files can serve as a working starting point for your code, but will need to be adjusted to do what you need them to do.
The main pipeline script will look something like this:
import dlt
from clubhouse import clubhouse_source
if __name__ == "__main__":
pipeline = dlt.pipeline(
pipeline_name="clubhouse_pipeline",
destination='duckdb',
dataset_name="clubhouse_data",
progress="log",
export_schema_path="schemas/export"
)
source = clubhouse_source()
info = pipeline.run(source)
print(info)
Provided you have set up your credentials, you can run your pipeline like a regular python script with the following command:
python clubhouse_pipeline.py
4. Inspecting your load result
You can now inspect the state of your pipeline with the dlt
cli:
dlt pipeline clubhouse_pipeline info
You can also use streamlit to inspect the contents of your Google Cloud Storage
destination for this:
# install streamlit
pip install streamlit
# run the streamlit app for your pipeline with the dlt cli:
dlt pipeline clubhouse_pipeline show
5. Next steps to get your pipeline running in production
One of the beauties of dlt
is, that we are just a plain Python library, so you can run your pipeline in any environment that supports Python >= 3.8. We have a couple of helpers and guides in our docs to get you there:
The Deploy section will show you how to deploy your pipeline to
- Deploy with GitHub Actions: Learn how to set up and deploy your
dlt
pipeline using GitHub Actions for a CI/CD workflow. Read more - Deploy with Airflow: Follow this guide to deploy your
dlt
pipeline using Airflow and Google Composer. Read more - Deploy with Google Cloud Functions: Use this tutorial to deploy your
dlt
pipeline with Google Cloud Functions. Read more - Explore more deployment options: Discover other methods to deploy your
dlt
pipeline. Read more
The running in production section will teach you about:
- How to Monitor your pipeline: Learn how to effectively monitor your pipeline to ensure smooth and efficient operations. Read more here.
- Set up alerts: Setting up alerts can help you stay informed about any issues or changes in your pipeline. Find out how here.
- Set up tracing: Tracing helps you understand the flow and performance of your pipeline. Learn how to set it up here.
Available Sources and Resources
For this verified source the following sources and resources are available
Source Clubhouse
Clubhouse source provides notifications, user suggestions, events, topics, settings, updates, and channels data.
Resource Name | Write Disposition | Description |
---|---|---|
get_notification | append | Retrieves notifications for the user. |
get_suggested_follows_all | append | Fetches a list of all suggested users to follow. |
get_event | append | Retrieves details about a specific event. |
get_users_for_topic | append | Gets a list of users associated with a specific topic. |
get_all_topic | append | Retrieves all available topics on the platform. |
get_setting | append | Fetches user settings and preferences. |
get_actionable_notification | append | Retrieves actionable notifications that require user interaction. |
check_for_update | append | Checks if there are any updates available for the app. |
get_channel | append | Retrieves information about a specific audio channel. |
get_welcome_channel | append | Fetches details about the welcome channel for new users. |
Additional pipeline guides
- Load data from Pipedrive to The Local Filesystem in python with dlt
- Load data from X to MotherDuck in python with dlt
- Load data from Microsoft SQL Server to YugabyteDB in python with dlt
- Load data from Looker to The Local Filesystem in python with dlt
- Load data from Shopify to Azure Cosmos DB in python with dlt
- Load data from Google Cloud Storage to Azure Cosmos DB in python with dlt
- Load data from IBM Db2 to AWS S3 in python with dlt
- Load data from GitLab to Timescale in python with dlt
- Load data from Azure Cloud Storage to Timescale in python with dlt
- Load data from Zendesk to Timescale in python with dlt