Skip to main content

Python Data Loading from airtable to databricks with dlt

Need help deploying these pipelines, or figuring out how to run them in your data stack?

Join our Slack community or book a call with our support engineer Violetta.

Welcome to this technical documentation page. Here, we'll explore how to use the open-source Python library, dlt, to load data from Airtable to Databricks. Airtable is a cloud-based platform that seamlessly combines spreadsheet and database functionalities, enhancing data management and collaboration. On the other hand, Databricks is a unified data analytics platform designed by the original creators of Apache Spark™. It boosts innovation by integrating data science, engineering, and business. By leveraging the capabilities of dlt, we can streamline data transfer between these two platforms. More details about Airtable can be found at https://www.airtable.com/.

dlt Key Features

  • Automated maintenance: With schema inference and evolution and alerts, and with short declarative code, maintenance becomes simple. More details can be found here.
  • Scalability and performance: dlt provides scalability through iterators, chunking, parallelization and implicit extraction DAGs. More information can be found here.
  • Governance support: dlt pipelines offer robust governance support through pipeline metadata utilization, schema enforcement and curation, and schema change alerts. More details can be found here.
  • Flexible destination support: dlt supports a wide range of destinations for your data, including Databricks, DuckDB, Google BigQuery, and many others. More details can be found here.
  • Community Support: dlt has a growing community that supports many features and use cases needed by the community. You can join the dlt community here.

Getting started with your pipeline locally

0. Prerequisites

dlt requires Python 3.8 or higher. Additionally, you need to have the pip package manager installed, and we recommend using a virtual environment to manage your dependencies. You can learn more about preparing your computer for dlt in our installation reference.

1. Install dlt

First you need to install the dlt library with the correct extras for Databricks:

pip install "dlt[databricks]"

The dlt cli has a useful command to get you started with any combination of source and destination. For this example, we want to load data from Airtable to Databricks. You can run the following commands to create a starting point for loading data from Airtable to Databricks:

# create a new directory
mkdir airtable_pipeline
cd airtable_pipeline
# initialize a new pipeline with your source and destination
dlt init airtable databricks
# install the required dependencies
pip install -r requirements.txt

The last command will install the required dependencies for your pipeline. The dependencies are listed in the requirements.txt:


pyairtable~=2.1
dlt[databricks]>=0.3.25

You now have the following folder structure in your project:

airtable_pipeline/
├── .dlt/
│ ├── config.toml # configs for your pipeline
│ └── secrets.toml # secrets for your pipeline
├── airtable/ # folder with source specific files
│ └── ...
├── airtable_pipeline.py # your main pipeline script
├── requirements.txt # dependencies for your pipeline
└── .gitignore # ignore files for git (not required)

2. Configuring your source and destination credentials

The dlt cli will have created a .dlt directory in your project folder. This directory contains a config.toml file and a secrets.toml file that you can use to configure your pipeline. The automatically created version of these files look like this:

generated config.toml

# put your configuration values here

[runtime]
log_level="WARNING" # the system log level of dlt
# use the dlthub_telemetry setting to enable/disable anonymous usage data reporting, see https://dlthub.com/docs/telemetry
dlthub_telemetry = true

[sources.airtable]
base_id = "base_id" # please set me up!

generated secrets.toml

# put your secret values and credentials here. do not share this file and do not push it to github

[sources.airtable]
access_token = "access_token" # please set me up!

[destination.databricks.credentials]
catalog = "catalog" # please set me up!
server_hostname = "server_hostname" # please set me up!
http_path = "http_path" # please set me up!
access_token = "access_token" # please set me up!

2.1. Adjust the generated code to your usecase

Further help setting up your source and destinations
  • Read more about setting up the Airtable source in our docs.
  • Read more about setting up the Databricks destination in our docs.

3. Running your pipeline for the first time

The dlt cli has also created a main pipeline script for you at airtable_pipeline.py, as well as a folder airtable that contains additional python files for your source. These files are your local copies which you can modify to fit your needs. In some cases you may find that you only need to do small changes to your pipelines or add some configurations, in other cases these files can serve as a working starting point for your code, but will need to be adjusted to do what you need them to do.

The main pipeline script will look something like this:


from typing import List, Dict, Any

import dlt

from airtable import airtable_source


def load_entire_base(base_id: str, resources_to_apply_hints: Dict[str, Any]) -> None:
"""
Loads all tables from the specified Airtable base.

Args:
base_id (str): The id of the base. Obtain it, e.g. from the URL in your web browser.
It starts with "app". See https://support.airtable.com/docs/finding-airtable-ids
resources_to_apply_hints (dict): Dict of table names and fields we want to apply hints.

Note:
- The base_id can either be passed directly or set up in ".dlt/config.toml".
"""
# configure the pipeline with your destination details
pipeline = dlt.pipeline(
pipeline_name="airtable", destination='databricks', dataset_name="airtable_data"
)

# Retrieve data from Airtable using airtable_source.
airtables = airtable_source(base_id=base_id)

# typing columns to silence warnings
for resource_name, field_names in resources_to_apply_hints.items():
for field_name in field_names:
airtables.resources[resource_name].apply_hints(
columns={field_name: {"name": field_name, "data_type": "text"}}
)

load_info = pipeline.run(airtables, write_disposition="replace")
print(load_info)


def load_select_tables_from_base_by_id(base_id: str, table_names: List[str]) -> None:
"""
Load specific table IDs from Airtable to a data pipeline.

Args:
base_id (str): The id of the base. Obtain it, e.g. from the URL in your web browser.
It starts with "app". See https://support.airtable.com/docs/finding-airtable-ids
table_names (List[str]): A list of table IDs or table names to load. Unless specified otherwise,
all tables in the schema are loaded. Names are freely user-defined. IDs start with "tbl".
See https://support.airtable.com/docs/finding-airtable-ids
resources_to_apply_hints (dict): Dict of table names and fields we want to apply hints.

Note:
- Filtering by names is less reliable than filtering on IDs because names can be changed by Airtable users.
- Example in this Airtable URL: https://airtable.com/app7RlqvdoOmJm9XR/tblKHM5s3AujfSbAH
- Table ID: "tblKHM5s3AujfSbAH"
- The base_id and table_names can either be passed directly or set up in ".dlt/config.toml".
"""

# configure the pipeline with your destination details
pipeline = dlt.pipeline(
pipeline_name="airtable", destination='databricks', dataset_name="airtable_data"
)

airtables = airtable_source(
base_id=base_id,
table_names=table_names,
)

load_info = pipeline.run(airtables, write_disposition="replace")
print(load_info)


def load_select_tables_from_base_by_name(
base_id: str, table_names: List[str], resources_to_apply_hints: Dict[str, Any]
) -> None:
"""
Loads specific table names from an Airtable base.

Args:
base_id (str): The id of the base. Obtain it, e.g. from the URL in your web browser.
It starts with "app". See https://support.airtable.com/docs/finding-airtable-ids
table_names (List[str]): A list of table IDs or table names to load. Unless specified otherwise,
all tables in the schema are loaded. Names are freely user-defined. IDs start with "tbl".
See https://support.airtable.com/docs/finding-airtable-idss
resources_to_apply_hints (dict): Dict of table names and fields we want to apply hints.

Note:
- Filtering by names is less reliable than filtering on IDs because names can be changed by Airtable users.
- Example in this Airtable URL: https://airtable.com/app7RlqvdoOmJm9XR/tblKHM5s3AujfSbAH
- Table ID: "tblKHM5s3AujfSbAH"
- The base_id and table_names can either be passed directly or set up in ".dlt/config.toml".
"""
pipeline = dlt.pipeline(
pipeline_name="airtable", destination='databricks', dataset_name="airtable_data"
)

airtables = airtable_source(
base_id=base_id,
table_names=table_names,
)

# typing columns to silence warnings
for resource_name, field_names in resources_to_apply_hints.items():
for field_name in field_names:
airtables.resources[resource_name].apply_hints(
columns={field_name: {"name": field_name, "data_type": "text"}}
)

load_info = pipeline.run(airtables, write_disposition="replace")
print(load_info)


def load_and_customize_write_disposition(
base_id: str, table_names: List[str], resources_to_apply_hints: Dict[str, Any]
) -> None:
"""
Loads data from a specific Airtable base's table with customized write disposition("merge") using field_name.

Args:
base_id (str): The id of the base. Obtain it, e.g. from the URL in your web browser.
It starts with "app". See https://support.airtable.com/docs/finding-airtable-ids
table_names (List[str]): A list of table IDs or table names to load. Unless specified otherwise,
all tables in the schema are loaded. Names are freely user-defined. IDs start with "tbl".
See https://support.airtable.com/docs/finding-airtable-ids
resources_to_apply_hints (dict): Dict of table names and fields we want to apply hints.


Note:
- Filtering by names is less reliable than filtering on IDs because names can be changed by Airtable users.
- Example in this Airtable URL: https://airtable.com/app7RlqvdoOmJm9XR/tblKHM5s3AujfSbAH
- Table ID: "tblKHM5s3AujfSbAH"
- The base_id and table_names can either be passed directly or set up in ".dlt/config.toml".

"""
pipeline = dlt.pipeline(
pipeline_name="airtable", destination='databricks', dataset_name="airtable_data"
)

airtables = airtable_source(
base_id=base_id,
table_names=table_names,
)

# typing columns to silence warnings
for resource_name, field_names in resources_to_apply_hints.items():
for field_name in field_names:
airtables.resources[resource_name].apply_hints(
primary_key=field_name,
columns={field_name: {"name": field_name, "data_type": "text"}},
write_disposition="merge",
)

load_info = pipeline.run(airtables)
print(load_info)


if __name__ == "__main__":
load_entire_base(
base_id="app7RlqvdoOmJm9XR",
resources_to_apply_hints={
"🎤 Speakers": ["Name"],
"📆 Schedule": ["Activity"],
"🪑 Attendees": ["Name"],
"💰 Budget": ["Item"],
},
)
load_select_tables_from_base_by_id(
base_id="app7RlqvdoOmJm9XR",
table_names=["tblKHM5s3AujfSbAH", "tbloBrS8PnoO63aMP"],
)
load_select_tables_from_base_by_name(
"app7RlqvdoOmJm9XR",
table_names=["💰 Budget"],
resources_to_apply_hints={"💰 Budget": ["Item"]},
)
load_and_customize_write_disposition(
base_id="appcChDyP0pZeC76v",
table_names=["tbl1sN4CpPv8pBll4"],
resources_to_apply_hints={"Sheet1": ["Name"]},
)

Provided you have set up your credentials, you can run your pipeline like a regular python script with the following command:

python airtable_pipeline.py

4. Inspecting your load result

You can now inspect the state of your pipeline with the dlt cli:

dlt pipeline airtable info

You can also use streamlit to inspect the contents of your Databricks destination for this:

# install streamlit
pip install streamlit
# run the streamlit app for your pipeline with the dlt cli:
dlt pipeline airtable show

5. Next steps to get your pipeline running in production

One of the beauties of dlt is, that we are just a plain Python library, so you can run your pipeline in any environment that supports Python >= 3.8. We have a couple of helpers and guides in our docs to get you there:

The Deploy section will show you how to deploy your pipeline to

  • Deploy with Github Actions: dlt can be deployed using Github Actions. This is a CI/CD runner that is essentially free to use. It requires a cron schedule expression to specify when the Github Action should run. Check out the guide on how to deploy a pipeline with Github Actions.
  • Deploy with Airflow and Google Composer: You can deploy dlt using Airflow and Google Composer. This involves creating an Airflow DAG for your pipeline script. The guide on how to deploy a pipeline with Airflow and Google Composer provides more details.
  • Deploy with Google Cloud Functions: dlt can also be deployed using Google Cloud Functions. This method allows you to run your pipeline in a serverless environment. Learn more about how to deploy a pipeline with Google Cloud Functions.
  • Other Deployment Options: There are several other ways to deploy dlt including using a local machine, a server, or a cloud-based service. Check out the other deployment options for more information.

The running in production section will teach you about:

  • Monitor Your Pipeline: With dlt, you can easily monitor your pipeline's performance. This allows you to keep an eye on the health of your pipeline and ensure that everything is running smoothly. Check out the guide on how to monitor your pipeline for more information.
  • Set Up Alerts: dlt allows you to set up alerts to notify you of any significant events or errors that occur during the pipeline's execution. This can be particularly useful for identifying and resolving issues quickly. Learn more about how to set up alerts with dlt.
  • Set Up Tracing: Tracing is a powerful feature that dlt provides to help you understand the execution flow of your pipeline. It can help you identify bottlenecks and improve the performance of your pipeline. Find out more on how to set up tracing in your pipeline.

Additional pipeline guides

This demo works on codespaces. Codespaces is a development environment available for free to anyone with a Github account. You'll be asked to fork the demo repository and from there the README guides you with further steps.
The demo uses the Continue VSCode extension.

Off to codespaces!

DHelp

Ask a question

Welcome to "Codex Central", your next-gen help center, driven by OpenAI's GPT-4 model. It's more than just a forum or a FAQ hub – it's a dynamic knowledge base where coders can find AI-assisted solutions to their pressing problems. With GPT-4's powerful comprehension and predictive abilities, Codex Central provides instantaneous issue resolution, insightful debugging, and personalized guidance. Get your code running smoothly with the unparalleled support at Codex Central - coding help reimagined with AI prowess.