Skip to main content

Loading Data from Slack to YugabyteDB with dlt in Python

tip

We will be using the dlt PostgreSQL destination to connect to YugabyteDB. You can get the connection string for your YugabyteDB database as described in the YugabyteDB Docs.

Need help deploying these pipelines, or figuring out how to run them in your data stack?

Join our Slack community or book a call with our support engineer Violetta.

Loading data from Slack to YugabyteDB can streamline your business operations by centralizing communication data in a robust, scalable database. Slack is a messaging app for businesses that connects people to the information they need. YugabyteDB is a distributed PostgreSQL database designed for modern applications, offering built-in resilience, seamless scalability, and flexible geo-distribution. Using the open-source Python library dlt, you can efficiently transfer data from Slack to YugabyteDB. This integration leverages dlt's capabilities to ensure data consistency and integrity. For more information about Slack, visit Slack's official site.

dlt Key Features

  • Pipeline Metadata: dlt pipelines leverage metadata to provide governance capabilities, including load IDs for tracking data loads and facilitating data lineage and traceability. Read more about lineage.
  • Schema Enforcement and Curation: Ensure data consistency and quality by enforcing and curating schemas, which define the structure of normalized data and guide the processing and loading of data. Read more about adjusting a schema.
  • Scalability via Iterators, Chunking, and Parallelization: Efficiently process large datasets by breaking them down into manageable chunks and leveraging parallel processing capabilities. Learn more about performance.
  • Implicit Extraction DAGs: Handle dependencies between data sources and their transformations automatically, ensuring data consistency and integrity. Learn more about building a pipeline.
  • Log Level and Format Configuration: Set log levels and switch logging to JSON format for better diagnostics and monitoring. Learn more about running in production.

Getting started with your pipeline locally

0. Prerequisites

dlt requires Python 3.8 or higher. Additionally, you need to have the pip package manager installed, and we recommend using a virtual environment to manage your dependencies. You can learn more about preparing your computer for dlt in our installation reference.

1. Install dlt

First you need to install the dlt library with the correct extras for YugabyteDB:

pip install "dlt[postgres]"

The dlt cli has a useful command to get you started with any combination of source and destination. For this example, we want to load data from Slack to YugabyteDB. You can run the following commands to create a starting point for loading data from Slack to YugabyteDB:

# create a new directory
mkdir slack_pipeline
cd slack_pipeline
# initialize a new pipeline with your source and destination
dlt init slack postgres
# install the required dependencies
pip install -r requirements.txt

The last command will install the required dependencies for your pipeline. The dependencies are listed in the requirements.txt:

dlt[postgres]>=0.3.12

You now have the following folder structure in your project:

slack_pipeline/
├── .dlt/
│ ├── config.toml # configs for your pipeline
│ └── secrets.toml # secrets for your pipeline
├── slack/ # folder with source specific files
│ └── ...
├── slack_pipeline.py # your main pipeline script
├── requirements.txt # dependencies for your pipeline
└── .gitignore # ignore files for git (not required)

2. Configuring your source and destination credentials

The dlt cli will have created a .dlt directory in your project folder. This directory contains a config.toml file and a secrets.toml file that you can use to configure your pipeline. The automatically created version of these files look like this:

generated config.toml

# put your configuration values here

[runtime]
log_level="WARNING" # the system log level of dlt
# use the dlthub_telemetry setting to enable/disable anonymous usage data reporting, see https://dlthub.com/docs/telemetry
dlthub_telemetry = true

generated secrets.toml

# put your secret values and credentials here. do not share this file and do not push it to github

[sources.slack]
access_token = "access_token" # please set me up!

[destination.postgres]
dataset_name = "dataset_name" # please set me up!

[destination.postgres.credentials]
database = "database" # please set me up!
password = "password" # please set me up!
username = "username" # please set me up!
host = "host" # please set me up!
port = 5432
connect_timeout = 15

2.1. Adjust the generated code to your usecase

Further help setting up your source and destinations
  • Read more about setting up the Slack source in our docs.
  • Read more about setting up the YugabyteDB destination in our docs.

3. Running your pipeline for the first time

The dlt cli has also created a main pipeline script for you at slack_pipeline.py, as well as a folder slack that contains additional python files for your source. These files are your local copies which you can modify to fit your needs. In some cases you may find that you only need to do small changes to your pipelines or add some configurations, in other cases these files can serve as a working starting point for your code, but will need to be adjusted to do what you need them to do.

The main pipeline script will look something like this:


"""Pipeline to load slack into duckdb."""

from typing import List

import dlt
from pendulum import datetime
from slack import slack_source


def load_all_resources(replies: bool = False) -> None:
"""Load all resources from slack without any selection of channels."""

pipeline = dlt.pipeline(
pipeline_name="slack", destination='postgres', dataset_name="slack_data"
)

source = slack_source(
page_size=1000,
start_date=datetime(2023, 9, 1),
end_date=datetime(2023, 9, 8),
replies=replies,
)

# Uncomment the following line to load only the access_logs resource. It is not selected
# by default because it is a resource just available on paid accounts.
# source.access_logs.selected = True

load_info = pipeline.run(
source,
)
print(load_info)


def select_resource(selected_channels: List[str]) -> None:
"""Execute a pipeline that will load the given Slack list of channels with the selected
channels incrementally beginning at the given start date."""

pipeline = dlt.pipeline(
pipeline_name="slack", destination='postgres', dataset_name="slack_data"
)

source = slack_source(
page_size=20,
selected_channels=selected_channels,
start_date=datetime(2023, 9, 1),
end_date=datetime(2023, 9, 8),
).with_resources("channels", "1-announcements", "dlt-github-ci")

load_info = pipeline.run(
source,
)
print(load_info)


def get_users() -> None:
"""Execute a pipeline that will load Slack users list."""

pipeline = dlt.pipeline(
pipeline_name="slack", destination='postgres', dataset_name="slack_data"
)

source = slack_source(
page_size=20,
).with_resources("users")

load_info = pipeline.run(
source,
)
print(load_info)


if __name__ == "__main__":
# Add your desired resources to the list...
# resources = ["access_logs", "conversations", "conversations_history"]

# load_all_resources()

# load all resources with replies
# load_all_resources(replies=True)

# select_resource(selected_channels=["dlt-github-ci"])
# select_resource(selected_channels=["1-announcements", "dlt-github-ci"])

get_users()

Provided you have set up your credentials, you can run your pipeline like a regular python script with the following command:

python slack_pipeline.py

4. Inspecting your load result

You can now inspect the state of your pipeline with the dlt cli:

dlt pipeline slack info

You can also use streamlit to inspect the contents of your YugabyteDB destination for this:

# install streamlit
pip install streamlit
# run the streamlit app for your pipeline with the dlt cli:
dlt pipeline slack show

5. Next steps to get your pipeline running in production

One of the beauties of dlt is, that we are just a plain Python library, so you can run your pipeline in any environment that supports Python >= 3.8. We have a couple of helpers and guides in our docs to get you there:

The Deploy section will show you how to deploy your pipeline to

  • Deploy with GitHub Actions: Learn how to set up and deploy your pipeline using GitHub Actions with step-by-step instructions. Read more
  • Deploy with Airflow and Google Composer: Follow this guide to deploy your pipeline using Airflow and Google Composer. Read more
  • Deploy with Google Cloud Functions: Discover how to deploy your pipeline using Google Cloud Functions. Read more
  • Explore other deployment options: Check out additional methods and guides for deploying your pipeline. Read more

The running in production section will teach you about:

  • How to Monitor your pipeline: Learn how to effectively monitor your dlt pipeline in production to ensure smooth operation and quick issue detection. Read more
  • Set up alerts: Set up alerts to get notified about critical events and issues in your dlt pipeline. Read more
  • Set up tracing: Implement tracing to track the detailed execution flow and performance metrics of your dlt pipeline. Read more

Additional pipeline guides

This demo works on codespaces. Codespaces is a development environment available for free to anyone with a Github account. You'll be asked to fork the demo repository and from there the README guides you with further steps.
The demo uses the Continue VSCode extension.

Off to codespaces!

DHelp

Ask a question

Welcome to "Codex Central", your next-gen help center, driven by OpenAI's GPT-4 model. It's more than just a forum or a FAQ hub – it's a dynamic knowledge base where coders can find AI-assisted solutions to their pressing problems. With GPT-4's powerful comprehension and predictive abilities, Codex Central provides instantaneous issue resolution, insightful debugging, and personalized guidance. Get your code running smoothly with the unparalleled support at Codex Central - coding help reimagined with AI prowess.