Python Data Loading from airtable
to dremio
using dlt
Library
Join our Slack community or book a call with our support engineer Violetta.
This document provides technical guidance on how to use the open-source Python library, dlt
, to load data from Airtable
to Dremio
. Airtable
is a cloud-based platform that combines spreadsheet and database functionalities, enabling efficient data management and collaboration. On the other hand, Dremio
is a data lakehouse solution offering flexibility, scalability, and performance, meeting leaders at all stages of their data journey. By using dlt
, you can seamlessly extract data from Airtable
and load it into your Dremio
environment. For more information about Airtable
, visit https://www.airtable.com/.
dlt
Key Features
- Automated maintenance: With schema inference and evolution, alerts, and short declarative code, maintenance becomes simple. Learn more here.
- Scalability and Performance:
dlt
offers scalable data extraction by leveraging iterators, chunking, and parallelization techniques. It also facilitates parallelization during the extraction process. Learn more here. - Robust Governance Support:
dlt
pipelines offer robust governance support through pipeline metadata utilization, schema enforcement and curation, and schema change alerts. It enables proactive governance by alerting users to schema changes. Learn more here. - Effective Data Extraction:
dlt
incorporates the concept of implicit extraction DAGs to handle the dependencies between data sources and their transformations automatically. This extraction DAG ensures that the data is extracted in the correct order, accounting for any dependencies and transformations. Learn more here. - Flexible and Powerful:
dlt
automatically turns JSON returned by any source into a live dataset stored in the destination of your choice. It does this by first extracting the JSON data, then normalizing it to a schema, and finally loading it to the location where you will store it. Learn more here.
Getting started with your pipeline locally
0. Prerequisites
dlt
requires Python 3.8 or higher. Additionally, you need to have the pip
package manager installed, and we recommend using a virtual environment to manage your dependencies. You can learn more about preparing your computer for dlt in our installation reference.
1. Install dlt
First you need to install the dlt
library with the correct extras for Dremio
:
pip install "dlt[dremio]"
The dlt
cli has a useful command to get you started with any combination of source and destination. For this example, we want to load data from Airtable
to Dremio
. You can run the following commands to create a starting point for loading data from Airtable
to Dremio
:
# create a new directory
mkdir airtable_pipeline
cd airtable_pipeline
# initialize a new pipeline with your source and destination
dlt init airtable dremio
# install the required dependencies
pip install -r requirements.txt
The last command will install the required dependencies for your pipeline. The dependencies are listed in the requirements.txt
:
pyairtable~=2.1
dlt[dremio]>=0.3.25
You now have the following folder structure in your project:
airtable_pipeline/
├── .dlt/
│ ├── config.toml # configs for your pipeline
│ └── secrets.toml # secrets for your pipeline
├── airtable/ # folder with source specific files
│ └── ...
├── airtable_pipeline.py # your main pipeline script
├── requirements.txt # dependencies for your pipeline
└── .gitignore # ignore files for git (not required)
2. Configuring your source and destination credentials
The dlt
cli will have created a .dlt
directory in your project folder. This directory contains a config.toml
file and a secrets.toml
file that you can use to configure your pipeline. The automatically created version of these files look like this:
generated config.toml
# put your configuration values here
[runtime]
log_level="WARNING" # the system log level of dlt
# use the dlthub_telemetry setting to enable/disable anonymous usage data reporting, see https://dlthub.com/docs/telemetry
dlthub_telemetry = true
[sources.airtable]
base_id = "base_id" # please set me up!
generated secrets.toml
# put your secret values and credentials here. do not share this file and do not push it to github
[sources.airtable]
access_token = "access_token" # please set me up!
[destination.dremio]
dataset_name = "dataset_name" # please set me up!
staging_data_source = "staging_data_source" # please set me up!
[destination.dremio.credentials]
database = "database" # please set me up!
password = "password" # please set me up!
username = "username" # please set me up!
host = "host" # please set me up!
port = 32010
2.1. Adjust the generated code to your usecase
3. Running your pipeline for the first time
The dlt
cli has also created a main pipeline script for you at airtable_pipeline.py
, as well as a folder airtable
that contains additional python files for your source. These files are your local copies which you can modify to fit your needs. In some cases you may find that you only need to do small changes to your pipelines or add some configurations, in other cases these files can serve as a working starting point for your code, but will need to be adjusted to do what you need them to do.
The main pipeline script will look something like this:
from typing import List, Dict, Any
import dlt
from airtable import airtable_source
def load_entire_base(base_id: str, resources_to_apply_hints: Dict[str, Any]) -> None:
"""
Loads all tables from the specified Airtable base.
Args:
base_id (str): The id of the base. Obtain it, e.g. from the URL in your web browser.
It starts with "app". See https://support.airtable.com/docs/finding-airtable-ids
resources_to_apply_hints (dict): Dict of table names and fields we want to apply hints.
Note:
- The base_id can either be passed directly or set up in ".dlt/config.toml".
"""
# configure the pipeline with your destination details
pipeline = dlt.pipeline(
pipeline_name="airtable", destination='dremio', dataset_name="airtable_data"
)
# Retrieve data from Airtable using airtable_source.
airtables = airtable_source(base_id=base_id)
# typing columns to silence warnings
for resource_name, field_names in resources_to_apply_hints.items():
for field_name in field_names:
airtables.resources[resource_name].apply_hints(
columns={field_name: {"name": field_name, "data_type": "text"}}
)
load_info = pipeline.run(airtables, write_disposition="replace")
print(load_info)
def load_select_tables_from_base_by_id(base_id: str, table_names: List[str]) -> None:
"""
Load specific table IDs from Airtable to a data pipeline.
Args:
base_id (str): The id of the base. Obtain it, e.g. from the URL in your web browser.
It starts with "app". See https://support.airtable.com/docs/finding-airtable-ids
table_names (List[str]): A list of table IDs or table names to load. Unless specified otherwise,
all tables in the schema are loaded. Names are freely user-defined. IDs start with "tbl".
See https://support.airtable.com/docs/finding-airtable-ids
resources_to_apply_hints (dict): Dict of table names and fields we want to apply hints.
Note:
- Filtering by names is less reliable than filtering on IDs because names can be changed by Airtable users.
- Example in this Airtable URL: https://airtable.com/app7RlqvdoOmJm9XR/tblKHM5s3AujfSbAH
- Table ID: "tblKHM5s3AujfSbAH"
- The base_id and table_names can either be passed directly or set up in ".dlt/config.toml".
"""
# configure the pipeline with your destination details
pipeline = dlt.pipeline(
pipeline_name="airtable", destination='dremio', dataset_name="airtable_data"
)
airtables = airtable_source(
base_id=base_id,
table_names=table_names,
)
load_info = pipeline.run(airtables, write_disposition="replace")
print(load_info)
def load_select_tables_from_base_by_name(
base_id: str, table_names: List[str], resources_to_apply_hints: Dict[str, Any]
) -> None:
"""
Loads specific table names from an Airtable base.
Args:
base_id (str): The id of the base. Obtain it, e.g. from the URL in your web browser.
It starts with "app". See https://support.airtable.com/docs/finding-airtable-ids
table_names (List[str]): A list of table IDs or table names to load. Unless specified otherwise,
all tables in the schema are loaded. Names are freely user-defined. IDs start with "tbl".
See https://support.airtable.com/docs/finding-airtable-idss
resources_to_apply_hints (dict): Dict of table names and fields we want to apply hints.
Note:
- Filtering by names is less reliable than filtering on IDs because names can be changed by Airtable users.
- Example in this Airtable URL: https://airtable.com/app7RlqvdoOmJm9XR/tblKHM5s3AujfSbAH
- Table ID: "tblKHM5s3AujfSbAH"
- The base_id and table_names can either be passed directly or set up in ".dlt/config.toml".
"""
pipeline = dlt.pipeline(
pipeline_name="airtable", destination='dremio', dataset_name="airtable_data"
)
airtables = airtable_source(
base_id=base_id,
table_names=table_names,
)
# typing columns to silence warnings
for resource_name, field_names in resources_to_apply_hints.items():
for field_name in field_names:
airtables.resources[resource_name].apply_hints(
columns={field_name: {"name": field_name, "data_type": "text"}}
)
load_info = pipeline.run(airtables, write_disposition="replace")
print(load_info)
def load_and_customize_write_disposition(
base_id: str, table_names: List[str], resources_to_apply_hints: Dict[str, Any]
) -> None:
"""
Loads data from a specific Airtable base's table with customized write disposition("merge") using field_name.
Args:
base_id (str): The id of the base. Obtain it, e.g. from the URL in your web browser.
It starts with "app". See https://support.airtable.com/docs/finding-airtable-ids
table_names (List[str]): A list of table IDs or table names to load. Unless specified otherwise,
all tables in the schema are loaded. Names are freely user-defined. IDs start with "tbl".
See https://support.airtable.com/docs/finding-airtable-ids
resources_to_apply_hints (dict): Dict of table names and fields we want to apply hints.
Note:
- Filtering by names is less reliable than filtering on IDs because names can be changed by Airtable users.
- Example in this Airtable URL: https://airtable.com/app7RlqvdoOmJm9XR/tblKHM5s3AujfSbAH
- Table ID: "tblKHM5s3AujfSbAH"
- The base_id and table_names can either be passed directly or set up in ".dlt/config.toml".
"""
pipeline = dlt.pipeline(
pipeline_name="airtable", destination='dremio', dataset_name="airtable_data"
)
airtables = airtable_source(
base_id=base_id,
table_names=table_names,
)
# typing columns to silence warnings
for resource_name, field_names in resources_to_apply_hints.items():
for field_name in field_names:
airtables.resources[resource_name].apply_hints(
primary_key=field_name,
columns={field_name: {"name": field_name, "data_type": "text"}},
write_disposition="merge",
)
load_info = pipeline.run(airtables)
print(load_info)
if __name__ == "__main__":
load_entire_base(
base_id="app7RlqvdoOmJm9XR",
resources_to_apply_hints={
"🎤 Speakers": ["Name"],
"📆 Schedule": ["Activity"],
"🪑 Attendees": ["Name"],
"💰 Budget": ["Item"],
},
)
load_select_tables_from_base_by_id(
base_id="app7RlqvdoOmJm9XR",
table_names=["tblKHM5s3AujfSbAH", "tbloBrS8PnoO63aMP"],
)
load_select_tables_from_base_by_name(
"app7RlqvdoOmJm9XR",
table_names=["💰 Budget"],
resources_to_apply_hints={"💰 Budget": ["Item"]},
)
load_and_customize_write_disposition(
base_id="appcChDyP0pZeC76v",
table_names=["tbl1sN4CpPv8pBll4"],
resources_to_apply_hints={"Sheet1": ["Name"]},
)
Provided you have set up your credentials, you can run your pipeline like a regular python script with the following command:
python airtable_pipeline.py
4. Inspecting your load result
You can now inspect the state of your pipeline with the dlt
cli:
dlt pipeline airtable info
You can also use streamlit to inspect the contents of your Dremio
destination for this:
# install streamlit
pip install streamlit
# run the streamlit app for your pipeline with the dlt cli:
dlt pipeline airtable show
5. Next steps to get your pipeline running in production
One of the beauties of dlt
is, that we are just a plain Python library, so you can run your pipeline in any environment that supports Python >= 3.8. We have a couple of helpers and guides in our docs to get you there:
The Deploy section will show you how to deploy your pipeline to
- Deploy with Github Actions:
dlt
makes it easy to deploy your pipeline using Github Actions. Github Actions is a CI/CD runner that can be used for free to automate your pipelines. - Deploy with Airflow and Google Composer: You can also deploy your pipeline with Airflow. This guide will help you understand how to use Google Composer, a managed Airflow environment provided by Google, to deploy your pipeline.
- Deploy with Google Cloud Functions:
dlt
also supports deployment with Google Cloud Functions. This serverless execution environment allows you to build and connect cloud services with your code. - Other Deployment Options: There are several other ways to deploy your
dlt
pipeline. You can find more information about these options here.
The running in production section will teach you about:
- Monitor Your Pipeline:
dlt
provides robust monitoring capabilities to keep track of your pipeline's performance and health. It includes tools for inspecting load info, tracing runtime, and checking schema changes. Learn more about how to monitor your pipeline. - Set Up Alerts:
dlt
allows you to set up alerts to notify you of any issues or changes in your pipeline. This feature ensures that you are always up to date with the status of your pipeline and can react quickly to any problems. Learn how to set up alerts. - Set Up Tracing: Tracing in
dlt
provides detailed information about the runtime of your pipeline, including timing information on extract, normalize, and load steps. This feature is essential for debugging and optimizing your pipeline. Learn how to set up tracing.
Additional pipeline guides
- Load data from Airtable to BigQuery in python with dlt
- Load data from DigitalOcean to CockroachDB in python with dlt
- Load data from Salesforce to AWS S3 in python with dlt
- Load data from Notion to EDB BigAnimal in python with dlt
- Load data from Airtable to Azure Cloud Storage in python with dlt
- Load data from HubSpot to ClickHouse in python with dlt
- Load data from Rest API to Databricks in python with dlt
- Load data from Keap to BigQuery in python with dlt
- Load data from AWS S3 to ClickHouse in python with dlt
- Load data from Box Platform API to CockroachDB in python with dlt