Python Data Loading from pipedrive
to azure cloud storage
using dlt
Join our Slack community or book a call with our support engineer Violetta.
Welcome to our technical documentation on using dlt
, an open-source Python library, to load data from Pipedrive
, a business-focused messaging app, into Azure Cloud Storage
, a Microsoft Azure service for data storage. This process facilitates the creation of data lakes on Azure, with the option to upload data in JSONL, Parquet, or CSV formats. For more information about Pipedrive
, please visit https://pipedrive.com. This guide will provide step-by-step instructions on how to use dlt
to effectively manage and transfer your data.
dlt
Key Features
- Pipedrive: A
dlt
verified source that loads data from the Pipedrive API to your desired destination. It supports various resources such as activity, organization, person, product, deal, pipeline, stage, and user. Learn more - Governance Support:
dlt
pipelines offer robust governance support through pipeline metadata utilization, schema enforcement and curation, and schema change alerts. Learn more - Advanced Usage:
dlt
offers advanced features such as deploying from a branch of theverified-sources
repo or from another repo. Learn more - Filesystem & Buckets:
dlt
supports storing data in remote file systems and bucket storages like S3, Google Storage, or Azure Blob Storage. Learn more - Tutorial: A comprehensive tutorial to help you efficiently use
dlt
to build a data pipeline. It covers various aspects like fetching data from an API, managing data loading behaviors, incremental loading, handling secrets, and more. Learn more
Getting started with your pipeline locally
0. Prerequisites
dlt
requires Python 3.8 or higher. Additionally, you need to have the pip
package manager installed, and we recommend using a virtual environment to manage your dependencies. You can learn more about preparing your computer for dlt in our installation reference.
1. Install dlt
First you need to install the dlt
library with the correct extras for Azure Cloud Storage
:
pip install "dlt[filesystem]"
The dlt
cli has a useful command to get you started with any combination of source and destination. For this example, we want to load data from Pipedrive
to Azure Cloud Storage
. You can run the following commands to create a starting point for loading data from Pipedrive
to Azure Cloud Storage
:
# create a new directory
mkdir pipedrive_pipeline
cd pipedrive_pipeline
# initialize a new pipeline with your source and destination
dlt init pipedrive filesystem
# install the required dependencies
pip install -r requirements.txt
The last command will install the required dependencies for your pipeline. The dependencies are listed in the requirements.txt
:
dlt[filesystem]>=0.3.5
You now have the following folder structure in your project:
pipedrive_pipeline/
├── .dlt/
│ ├── config.toml # configs for your pipeline
│ └── secrets.toml # secrets for your pipeline
├── pipedrive/ # folder with source specific files
│ └── ...
├── pipedrive_pipeline.py # your main pipeline script
├── requirements.txt # dependencies for your pipeline
└── .gitignore # ignore files for git (not required)
2. Configuring your source and destination credentials
The dlt
cli will have created a .dlt
directory in your project folder. This directory contains a config.toml
file and a secrets.toml
file that you can use to configure your pipeline. The automatically created version of these files look like this:
generated config.toml
# put your configuration values here
[runtime]
log_level="WARNING" # the system log level of dlt
# use the dlthub_telemetry setting to enable/disable anonymous usage data reporting, see https://dlthub.com/docs/telemetry
dlthub_telemetry = true
generated secrets.toml
# put your secret values and credentials here. do not share this file and do not push it to github
[sources.pipedrive]
pipedrive_api_key = "pipedrive_api_key" # please set me up!
[destination.filesystem]
dataset_name = "dataset_name" # please set me up!
bucket_url = "bucket_url" # please set me up!
[destination.filesystem.credentials]
aws_access_key_id = "aws_access_key_id" # please set me up!
aws_secret_access_key = "aws_secret_access_key" # please set me up!
2.1. Adjust the generated code to your usecase
The default filesystem destination is configured to connect to AWS S3. To load to Azure Cloud Storage, update the [destination.filesystem.credentials]
section in your secrets.toml
.
[destination.filesystem.credentials]
azure_storage_account_name="Please set me up!"
azure_storage_account_key="Please set me up!"
By default, the filesystem destination will store your files as JSONL
. You can tell your pipeline to choose a different format with the loader_file_format
property that you can set directly on the pipeline or via your config.toml
. Available values are jsonl
, parquet
and csv
:
[pipeline] # in ./dlt/config.toml
loader_file_format="parquet"
3. Running your pipeline for the first time
The dlt
cli has also created a main pipeline script for you at pipedrive_pipeline.py
, as well as a folder pipedrive
that contains additional python files for your source. These files are your local copies which you can modify to fit your needs. In some cases you may find that you only need to do small changes to your pipelines or add some configurations, in other cases these files can serve as a working starting point for your code, but will need to be adjusted to do what you need them to do.
The main pipeline script will look something like this:
import dlt
from pipedrive import pipedrive_source
def load_pipedrive() -> None:
"""Constructs a pipeline that will load all pipedrive data"""
# configure the pipeline with your destination details
pipeline = dlt.pipeline(
pipeline_name="pipedrive", destination='filesystem', dataset_name="pipedrive_data"
)
load_info = pipeline.run(pipedrive_source())
print(load_info)
print(pipeline.last_trace.last_normalize_info)
def load_selected_data() -> None:
"""Shows how to load just selected tables using `with_resources`"""
pipeline = dlt.pipeline(
pipeline_name="pipedrive", destination='filesystem', dataset_name="pipedrive_data"
)
# Use with_resources to select which entities to load
# Note: `custom_fields_mapping` must be included to translate custom field hashes to corresponding names
load_info = pipeline.run(
pipedrive_source().with_resources(
"products", "deals", "deals_participants", "custom_fields_mapping"
)
)
print(load_info)
# just to show how to access resources within source
pipedrive_data = pipedrive_source()
# print source info
print(pipedrive_data)
print()
# list resource names
print(pipedrive_data.resources.keys())
print()
# print `persons` resource info
print(pipedrive_data.resources["persons"])
print()
# alternatively
print(pipedrive_data.persons)
def load_from_start_date() -> None:
"""Example to incrementally load activities limited to items updated after a given date"""
pipeline = dlt.pipeline(
pipeline_name="pipedrive", destination='filesystem', dataset_name="pipedrive_data"
)
# First source configure to load everything except activities from the beginning
source = pipedrive_source()
source.resources["activities"].selected = False
# Another source configured to activities starting at the given date (custom_fields_mapping is included to translate custom field hashes to names)
activities_source = pipedrive_source(
since_timestamp="2023-03-01 00:00:00Z"
).with_resources("activities", "custom_fields_mapping")
# Run the pipeline with both sources
load_info = pipeline.run([source, activities_source])
print(load_info)
if __name__ == "__main__":
# run our main example
load_pipedrive()
# load selected tables and display resource info
# load_selected_data()
# load activities updated since given date
# load_from_start_date()
Provided you have set up your credentials, you can run your pipeline like a regular python script with the following command:
python pipedrive_pipeline.py
4. Inspecting your load result
You can now inspect the state of your pipeline with the dlt
cli:
dlt pipeline pipedrive info
You can also use streamlit to inspect the contents of your Azure Cloud Storage
destination for this:
# install streamlit
pip install streamlit
# run the streamlit app for your pipeline with the dlt cli:
dlt pipeline pipedrive show
5. Next steps to get your pipeline running in production
One of the beauties of dlt
is, that we are just a plain Python library, so you can run your pipeline in any environment that supports Python >= 3.8. We have a couple of helpers and guides in our docs to get you there:
The Deploy section will show you how to deploy your pipeline to
- Deploy with GitHub Actions: Use GitHub Actions for CI/CD to deploy your
dlt
pipeline. Follow the guide here. - Deploy with Airflow and Google Composer: Learn how to deploy your
dlt
pipeline using Airflow and Google Composer. Detailed instructions can be found here. - Deploy with Google Cloud Functions: Utilize Google Cloud Functions to deploy your
dlt
pipeline. The step-by-step guide is available here. - Explore other deployment options: Discover various other methods to deploy your
dlt
pipeline by exploring additional resources here.
The running in production section will teach you about:
- How to Monitor your pipeline: Learn how to keep an eye on your data pipeline to ensure it runs smoothly and efficiently by following the guide on How to Monitor your pipeline.
- Set up alerts: Set up notifications to stay informed about the status and health of your pipeline with the guide on Set up alerts.
- And set up tracing: Implement tracing to get detailed insights into your pipeline's performance and identify any issues by following the instructions on And set up tracing.
Available Sources and Resources
For this verified source the following sources and resources are available
Source pipedrive
Pipedrive source provides comprehensive data on sales activities, customer interactions, deals, and user information.
Resource Name | Write Disposition | Description |
---|---|---|
activities | merge | Refers to scheduled events or tasks associated with deals, contacts, or organizations |
custom_fields_mapping | replace | Mapping for custom fields in Pipedrive |
deals | merge | Potential sale or transaction that you can track through various stages |
deals_flow | merge | Represents the flow of deals in Pipedrive |
deals_participants | merge | Represents the participants of deals in Pipedrive |
leads | merge | Prospective customers or individuals that have shown interest in a company's products or services |
organizations | merge | Company or entity with which you have potential or existing business dealings |
persons | merge | Individual contact or lead with whom sales deals can be associated |
products | merge | Goods or services that a company sells, which can be associated with deals |
users | merge | Individual with a unique login credential who can access and use the platform |
Additional pipeline guides
- Load data from Microsoft SQL Server to YugabyteDB in python with dlt
- Load data from Imgur to Timescale in python with dlt
- Load data from Braze to Snowflake in python with dlt
- Load data from Slack to EDB BigAnimal in python with dlt
- Load data from Slack to Azure Cosmos DB in python with dlt
- Load data from Braze to The Local Filesystem in python with dlt
- Load data from HubSpot to CockroachDB in python with dlt
- Load data from Chess.com to Azure Cosmos DB in python with dlt
- Load data from Notion to Dremio in python with dlt
- Load data from Attio to The Local Filesystem in python with dlt