Loading Data from Chess.com
to Azure Cosmos DB
with dlt
in Python
We will be using the dlt PostgreSQL destination to connect to Azure Cosmos DB. You can get the connection string for your Azure Cosmos DB database as described in the Azure Cosmos DB Docs.
Join our Slack community or book a call with our support engineer Violetta.
Loading data from Chess.com
to Azure Cosmos DB
can be efficiently managed using the open-source Python library, dlt
. Chess.com
is an online platform that offers services for chess enthusiasts, including online games, tournaments, and lessons. Azure Cosmos DB
is a fully managed NoSQL and relational database designed for modern app development. With dlt
, you can easily transfer data from Chess.com
to Azure Cosmos DB
, leveraging its robust features to ensure seamless data integration. For more details on Chess.com
, visit https://www.chess.com/.
dlt
Key Features
- Governance Support:
dlt
pipelines offer robust governance through metadata utilization, schema enforcement, and schema change alerts. Learn more - Schema Evolution:
dlt
alerts users to schema changes, enabling proactive governance and ensuring data consistency. Learn more - Scaling and Finetuning:
dlt
allows parallel execution and offers various configuration options to optimize performance. Learn more - Data Types:
dlt
supports a wide range of data types, ensuring flexibility and precision in data handling. Learn more - Tables and Columns: Understand the key components of a schema, including tables and columns, and how
dlt
manages them. Learn more
Getting started with your pipeline locally
0. Prerequisites
dlt
requires Python 3.8 or higher. Additionally, you need to have the pip
package manager installed, and we recommend using a virtual environment to manage your dependencies. You can learn more about preparing your computer for dlt in our installation reference.
1. Install dlt
First you need to install the dlt
library with the correct extras for Azure Cosmos DB
:
pip install "dlt[postgres]"
The dlt
cli has a useful command to get you started with any combination of source and destination. For this example, we want to load data from Chess.com
to Azure Cosmos DB
. You can run the following commands to create a starting point for loading data from Chess.com
to Azure Cosmos DB
:
# create a new directory
mkdir chess_pipeline
cd chess_pipeline
# initialize a new pipeline with your source and destination
dlt init chess postgres
# install the required dependencies
pip install -r requirements.txt
The last command will install the required dependencies for your pipeline. The dependencies are listed in the requirements.txt
:
dlt[postgres]>=0.3.25
You now have the following folder structure in your project:
chess_pipeline/
├── .dlt/
│ ├── config.toml # configs for your pipeline
│ └── secrets.toml # secrets for your pipeline
├── chess/ # folder with source specific files
│ └── ...
├── chess_pipeline.py # your main pipeline script
├── requirements.txt # dependencies for your pipeline
└── .gitignore # ignore files for git (not required)
2. Configuring your source and destination credentials
The dlt
cli will have created a .dlt
directory in your project folder. This directory contains a config.toml
file and a secrets.toml
file that you can use to configure your pipeline. The automatically created version of these files look like this:
generated config.toml
# put your configuration values here
[runtime]
log_level="WARNING" # the system log level of dlt
# use the dlthub_telemetry setting to enable/disable anonymous usage data reporting, see https://dlthub.com/docs/telemetry
dlthub_telemetry = true
[sources.chess]
config_int = 0 # please set me up!
generated secrets.toml
# put your secret values and credentials here. do not share this file and do not push it to github
[sources.chess]
secret_str = "secret_str" # please set me up!
[sources.chess.secret_dict] # please set me up!
key = "value"
[destination.postgres]
dataset_name = "dataset_name" # please set me up!
[destination.postgres.credentials]
database = "database" # please set me up!
password = "password" # please set me up!
username = "username" # please set me up!
host = "host" # please set me up!
port = 5432
connect_timeout = 15
2.1. Adjust the generated code to your usecase
3. Running your pipeline for the first time
The dlt
cli has also created a main pipeline script for you at chess_pipeline.py
, as well as a folder chess
that contains additional python files for your source. These files are your local copies which you can modify to fit your needs. In some cases you may find that you only need to do small changes to your pipelines or add some configurations, in other cases these files can serve as a working starting point for your code, but will need to be adjusted to do what you need them to do.
The main pipeline script will look something like this:
import dlt
from chess import source
def load_players_games_example(start_month: str, end_month: str) -> None:
"""Constructs a pipeline that will load chess games of specific players for a range of months."""
# configure the pipeline: provide the destination and dataset name to which the data should go
pipeline = dlt.pipeline(
pipeline_name="chess_pipeline",
destination='postgres',
dataset_name="chess_players_games_data",
)
# create the data source by providing a list of players and start/end month in YYYY/MM format
data = source(
["magnuscarlsen", "vincentkeymer", "dommarajugukesh", "rpragchess"],
start_month=start_month,
end_month=end_month,
)
# load the "players_games" and "players_profiles" out of all the possible resources
info = pipeline.run(data.with_resources("players_games", "players_profiles"))
print(info)
def load_players_online_status() -> None:
"""Constructs a pipeline that will append online status of selected players"""
pipeline = dlt.pipeline(
pipeline_name="chess_pipeline",
destination='postgres',
dataset_name="chess_players_games_data",
)
data = source(["magnuscarlsen", "vincentkeymer", "dommarajugukesh", "rpragchess"])
info = pipeline.run(data.with_resources("players_online_status"))
print(info)
def load_players_games_incrementally() -> None:
"""Pipeline will not load the same game archive twice"""
# loads games for 11.2022
load_players_games_example("2022/11", "2022/11")
# second load skips games for 11.2022 but will load for 12.2022
load_players_games_example("2022/11", "2022/12")
if __name__ == "__main__":
# run our main example
load_players_games_example("2022/11", "2022/12")
load_players_online_status()
Provided you have set up your credentials, you can run your pipeline like a regular python script with the following command:
python chess_pipeline.py
4. Inspecting your load result
You can now inspect the state of your pipeline with the dlt
cli:
dlt pipeline chess_pipeline info
You can also use streamlit to inspect the contents of your Azure Cosmos DB
destination for this:
# install streamlit
pip install streamlit
# run the streamlit app for your pipeline with the dlt cli:
dlt pipeline chess_pipeline show
5. Next steps to get your pipeline running in production
One of the beauties of dlt
is, that we are just a plain Python library, so you can run your pipeline in any environment that supports Python >= 3.8. We have a couple of helpers and guides in our docs to get you there:
The Deploy section will show you how to deploy your pipeline to
Deploy with GitHub Actions: Learn how to set up and deploy your
dlt
pipeline using GitHub Actions for automated workflows. Follow the guide here.Deploy with Airflow and Google Composer: Discover how to deploy your
dlt
pipeline using Airflow and Google Composer for managed orchestration. Detailed instructions can be found here.Deploy with Google Cloud Functions: Explore deploying your
dlt
pipeline with Google Cloud Functions for serverless execution. The step-by-step guide is available here.More Deployment Options: Find additional deployment methods and guides for your
dlt
pipeline here.
The running in production section will teach you about:
- How to Monitor your pipeline: Learn how to monitor your
dlt
pipeline in production to ensure everything runs smoothly. How to Monitor your pipeline - Set up alerts: Set up alerts to stay informed about the status of your
dlt
pipeline and quickly address any issues. Set up alerts - Set up tracing: Implement tracing to get detailed insights into the performance and behavior of your
dlt
pipeline. And set up tracing
Available Sources and Resources
For this verified source the following sources and resources are available
Source chess
The Chess.com source provides data on player profiles, online statuses, and historical game details.
Resource Name | Write Disposition | Description |
---|---|---|
players_games | append | This resource retrieves players' games that happened between a specified start and end month. It includes various details like accuracy, ratings, results, time control, tournament details, etc. for both the black and white players in each game. |
players_online_status | append | This resource checks the current online status of multiple chess players. It retrieves their username, status, last login date, and check time. |
players_profiles | replace | This resource retrieves player profiles for a list of player usernames. It includes details like the player's avatar, country, followers, streaming status, join date, last online time, league, location, name, player ID, status, title, URL, username, and verification status. |
Additional pipeline guides
- Load data from Attio to The Local Filesystem in python with dlt
- Load data from Soundcloud to Google Cloud Storage in python with dlt
- Load data from IFTTT to BigQuery in python with dlt
- Load data from Aladtec to Azure Cloud Storage in python with dlt
- Load data from Google Cloud Storage to Azure Cosmos DB in python with dlt
- Load data from Aladtec to MotherDuck in python with dlt
- Load data from CircleCI to YugabyteDB in python with dlt
- Load data from Zuora to CockroachDB in python with dlt
- Load data from Zendesk to Redshift in python with dlt
- Load data from DigitalOcean to AlloyDB in python with dlt