Skip to main content

Python Guide: Loading pipedrive Data to aws s3 using dlt Library

Need help deploying these pipelines, or figuring out how to run them in your data stack?

Join our Slack community or book a call with our support engineer Violetta.

This page provides technical documentation on how to load data from pipedrive, a business-oriented messaging app, to AWS S3, a filesystem destination service, using an open-source Python library called dlt. pipedrive connects users to necessary information, while AWS S3 allows for the creation of datalakes and supports data upload in JSONL, Parquet, or CSV formats. dlt facilitates this data transfer. For more information about pipedrive, visit https://pipedrive.com.

dlt Key Features

  • Pipedrive API: This dlt verified source loads data from Pipedrive, a cloud-based sales CRM tool, using the Pipedrive API. It allows for the management of various resources such as activities, organizations, persons, products, deals, pipelines, stages, and users. More Information
  • Governance Support: dlt pipelines offer robust governance support through pipeline metadata utilization, schema enforcement and curation, and schema change alerts. These features contribute to better data management practices, compliance adherence, and overall data governance. More Information
  • Initialising a dlt project: dlt allows for the initialization of a new project using the command dlt init chess filesystem, which sets up a pipeline with chess as the source and the AWS S3 filesystem as the destination. More Information
  • Filesystem and Buckets: dlt supports storing data in remote file systems and bucket storages like S3, Google storage, or Azure blob storage. It uses fsspec to abstract file operations and can be installed with filesystem dependencies using pip install dlt[filesystem]. More Information
  • Advanced Initialization: dlt supports advanced initialization features, allowing users to deploy from a branch of the verified-sources repo or from another repo. This can be done using the --branch and --location flags respectively. More Information

Getting started with your pipeline locally

0. Prerequisites

dlt requires Python 3.8 or higher. Additionally, you need to have the pip package manager installed, and we recommend using a virtual environment to manage your dependencies. You can learn more about preparing your computer for dlt in our installation reference.

1. Install dlt

First you need to install the dlt library with the correct extras for AWS S3:

pip install "dlt[filesystem]"

The dlt cli has a useful command to get you started with any combination of source and destination. For this example, we want to load data from Pipedrive to AWS S3. You can run the following commands to create a starting point for loading data from Pipedrive to AWS S3:

# create a new directory
mkdir pipedrive_pipeline
cd pipedrive_pipeline
# initialize a new pipeline with your source and destination
dlt init pipedrive filesystem
# install the required dependencies
pip install -r requirements.txt

The last command will install the required dependencies for your pipeline. The dependencies are listed in the requirements.txt:

dlt[filesystem]>=0.3.5

You now have the following folder structure in your project:

pipedrive_pipeline/
├── .dlt/
│ ├── config.toml # configs for your pipeline
│ └── secrets.toml # secrets for your pipeline
├── pipedrive/ # folder with source specific files
│ └── ...
├── pipedrive_pipeline.py # your main pipeline script
├── requirements.txt # dependencies for your pipeline
└── .gitignore # ignore files for git (not required)

2. Configuring your source and destination credentials

The dlt cli will have created a .dlt directory in your project folder. This directory contains a config.toml file and a secrets.toml file that you can use to configure your pipeline. The automatically created version of these files look like this:

generated config.toml

# put your configuration values here

[runtime]
log_level="WARNING" # the system log level of dlt
# use the dlthub_telemetry setting to enable/disable anonymous usage data reporting, see https://dlthub.com/docs/telemetry
dlthub_telemetry = true

generated secrets.toml

# put your secret values and credentials here. do not share this file and do not push it to github

[sources.pipedrive]
pipedrive_api_key = "pipedrive_api_key" # please set me up!

[destination.filesystem]
dataset_name = "dataset_name" # please set me up!
bucket_url = "bucket_url" # please set me up!

[destination.filesystem.credentials]
aws_access_key_id = "aws_access_key_id" # please set me up!
aws_secret_access_key = "aws_secret_access_key" # please set me up!

2.1. Adjust the generated code to your usecase

Further help setting up your source and destinations
  • Read more about setting up the Pipedrive source in our docs.
  • Read more about setting up the AWS S3 destination in our docs.

By default, the filesystem destination will store your files as JSONL. You can tell your pipeline to choose a different format with the loader_file_format property that you can set directly on the pipeline or via your config.toml. Available values are jsonl, parquet and csv:

[pipeline] # in ./dlt/config.toml
loader_file_format="parquet"

3. Running your pipeline for the first time

The dlt cli has also created a main pipeline script for you at pipedrive_pipeline.py, as well as a folder pipedrive that contains additional python files for your source. These files are your local copies which you can modify to fit your needs. In some cases you may find that you only need to do small changes to your pipelines or add some configurations, in other cases these files can serve as a working starting point for your code, but will need to be adjusted to do what you need them to do.

The main pipeline script will look something like this:


import dlt
from pipedrive import pipedrive_source


def load_pipedrive() -> None:
"""Constructs a pipeline that will load all pipedrive data"""
# configure the pipeline with your destination details
pipeline = dlt.pipeline(
pipeline_name="pipedrive", destination='filesystem', dataset_name="pipedrive_data"
)
load_info = pipeline.run(pipedrive_source())
print(load_info)
print(pipeline.last_trace.last_normalize_info)


def load_selected_data() -> None:
"""Shows how to load just selected tables using `with_resources`"""
pipeline = dlt.pipeline(
pipeline_name="pipedrive", destination='filesystem', dataset_name="pipedrive_data"
)
# Use with_resources to select which entities to load
# Note: `custom_fields_mapping` must be included to translate custom field hashes to corresponding names
load_info = pipeline.run(
pipedrive_source().with_resources(
"products", "deals", "deals_participants", "custom_fields_mapping"
)
)
print(load_info)
# just to show how to access resources within source
pipedrive_data = pipedrive_source()
# print source info
print(pipedrive_data)
print()
# list resource names
print(pipedrive_data.resources.keys())
print()
# print `persons` resource info
print(pipedrive_data.resources["persons"])
print()
# alternatively
print(pipedrive_data.persons)


def load_from_start_date() -> None:
"""Example to incrementally load activities limited to items updated after a given date"""
pipeline = dlt.pipeline(
pipeline_name="pipedrive", destination='filesystem', dataset_name="pipedrive_data"
)

# First source configure to load everything except activities from the beginning
source = pipedrive_source()
source.resources["activities"].selected = False

# Another source configured to activities starting at the given date (custom_fields_mapping is included to translate custom field hashes to names)
activities_source = pipedrive_source(
since_timestamp="2023-03-01 00:00:00Z"
).with_resources("activities", "custom_fields_mapping")

# Run the pipeline with both sources
load_info = pipeline.run([source, activities_source])
print(load_info)


if __name__ == "__main__":
# run our main example
load_pipedrive()
# load selected tables and display resource info
# load_selected_data()
# load activities updated since given date
# load_from_start_date()

Provided you have set up your credentials, you can run your pipeline like a regular python script with the following command:

python pipedrive_pipeline.py

4. Inspecting your load result

You can now inspect the state of your pipeline with the dlt cli:

dlt pipeline pipedrive info

You can also use streamlit to inspect the contents of your AWS S3 destination for this:

# install streamlit
pip install streamlit
# run the streamlit app for your pipeline with the dlt cli:
dlt pipeline pipedrive show

5. Next steps to get your pipeline running in production

One of the beauties of dlt is, that we are just a plain Python library, so you can run your pipeline in any environment that supports Python >= 3.8. We have a couple of helpers and guides in our docs to get you there:

The Deploy section will show you how to deploy your pipeline to

  • Deploy with Github Actions: Learn how to automate your pipeline deployment using Github Actions.
  • Deploy with Airflow: Follow this guide to deploy your pipeline with Airflow and Google Composer.
  • Deploy with Google Cloud Functions: Discover how to deploy your pipeline using Google Cloud Functions.
  • Explore more deployment options: Check out additional methods for deploying your pipeline here.

The running in production section will teach you about:

  • How to Monitor your pipeline: Learn how to effectively monitor your dlt pipeline in production to ensure smooth operation and quick identification of issues. Read more here.
  • Set up alerts: Configure alerts to stay informed about the status and performance of your dlt pipeline. This guide will help you set up alerts to notify you of any significant events or errors. Read more here.
  • Set up tracing: Implement tracing to gain detailed insights into the execution of your dlt pipeline. Tracing helps in debugging and understanding the flow of data through the pipeline. Read more here.

Available Sources and Resources

For this verified source the following sources and resources are available

Source pipedrive

Pipedrive source provides comprehensive data on sales activities, customer interactions, deals, and user information.

Resource NameWrite DispositionDescription
activitiesmergeRefers to scheduled events or tasks associated with deals, contacts, or organizations
custom_fields_mappingreplaceMapping for custom fields in Pipedrive
dealsmergePotential sale or transaction that you can track through various stages
deals_flowmergeRepresents the flow of deals in Pipedrive
deals_participantsmergeRepresents the participants of deals in Pipedrive
leadsmergeProspective customers or individuals that have shown interest in a company's products or services
organizationsmergeCompany or entity with which you have potential or existing business dealings
personsmergeIndividual contact or lead with whom sales deals can be associated
productsmergeGoods or services that a company sells, which can be associated with deals
usersmergeIndividual with a unique login credential who can access and use the platform

Additional pipeline guides

This demo works on codespaces. Codespaces is a development environment available for free to anyone with a Github account. You'll be asked to fork the demo repository and from there the README guides you with further steps.
The demo uses the Continue VSCode extension.

Off to codespaces!

DHelp

Ask a question

Welcome to "Codex Central", your next-gen help center, driven by OpenAI's GPT-4 model. It's more than just a forum or a FAQ hub – it's a dynamic knowledge base where coders can find AI-assisted solutions to their pressing problems. With GPT-4's powerful comprehension and predictive abilities, Codex Central provides instantaneous issue resolution, insightful debugging, and personalized guidance. Get your code running smoothly with the unparalleled support at Codex Central - coding help reimagined with AI prowess.