Loading Chess.com Data to YugabyteDB with python dlt
We will be using the dlt PostgreSQL destination to connect to YugabyteDB. You can get the connection string for your YugabyteDB database as described in the YugabyteDB Docs.
Join our Slack community or book a call with our support engineer Violetta.
Loading data from Chess.com
to YugabyteDB
using dlt
enables seamless integration of chess-related data into a distributed database environment. Chess.com
is an online platform for chess enthusiasts, providing online games, tournaments, and lessons. YugabyteDB
is a distributed PostgreSQL database designed for modern applications, offering resilience, scalability, and flexible geo-distribution. The open-source Python library dlt
facilitates this data transfer, ensuring efficient and reliable data loading. For more information about the data source, visit Chess.com.
dlt
Key Features
- Pipeline Metadata:
dlt
pipelines leverage metadata to provide governance capabilities, including load IDs for tracking data loads and facilitating data lineage and traceability. Read more. - Schema Enforcement and Curation: Ensure data consistency and quality by enforcing and curating schemas, which define the structure of normalized data and guide the processing and loading of data. Learn more.
- Schema Evolution Alerts:
dlt
notifies users of schema changes, allowing for necessary actions such as reviewing changes, updating downstream processes, or performing impact analysis. Read more. - Scalability via Iterators and Parallelization: Efficiently process large datasets by leveraging iterators, chunking, and parallelization techniques, enabling incremental processing and loading. Learn more.
- DuckDB Integration: Easily integrate with DuckDB, a columnar database optimized for analytical workloads, by following the setup guide and utilizing supported file formats like parquet and jsonl. Read more.
Getting started with your pipeline locally
0. Prerequisites
dlt
requires Python 3.8 or higher. Additionally, you need to have the pip
package manager installed, and we recommend using a virtual environment to manage your dependencies. You can learn more about preparing your computer for dlt in our installation reference.
1. Install dlt
First you need to install the dlt
library with the correct extras for YugabyteDB
:
pip install "dlt[postgres]"
The dlt
cli has a useful command to get you started with any combination of source and destination. For this example, we want to load data from Chess.com
to YugabyteDB
. You can run the following commands to create a starting point for loading data from Chess.com
to YugabyteDB
:
# create a new directory
mkdir chess_pipeline
cd chess_pipeline
# initialize a new pipeline with your source and destination
dlt init chess postgres
# install the required dependencies
pip install -r requirements.txt
The last command will install the required dependencies for your pipeline. The dependencies are listed in the requirements.txt
:
dlt[postgres]>=0.3.25
You now have the following folder structure in your project:
chess_pipeline/
├── .dlt/
│ ├── config.toml # configs for your pipeline
│ └── secrets.toml # secrets for your pipeline
├── chess/ # folder with source specific files
│ └── ...
├── chess_pipeline.py # your main pipeline script
├── requirements.txt # dependencies for your pipeline
└── .gitignore # ignore files for git (not required)
2. Configuring your source and destination credentials
The dlt
cli will have created a .dlt
directory in your project folder. This directory contains a config.toml
file and a secrets.toml
file that you can use to configure your pipeline. The automatically created version of these files look like this:
generated config.toml
# put your configuration values here
[runtime]
log_level="WARNING" # the system log level of dlt
# use the dlthub_telemetry setting to enable/disable anonymous usage data reporting, see https://dlthub.com/docs/telemetry
dlthub_telemetry = true
[sources.chess]
config_int = 0 # please set me up!
generated secrets.toml
# put your secret values and credentials here. do not share this file and do not push it to github
[sources.chess]
secret_str = "secret_str" # please set me up!
[sources.chess.secret_dict] # please set me up!
key = "value"
[destination.postgres]
dataset_name = "dataset_name" # please set me up!
[destination.postgres.credentials]
database = "database" # please set me up!
password = "password" # please set me up!
username = "username" # please set me up!
host = "host" # please set me up!
port = 5432
connect_timeout = 15
2.1. Adjust the generated code to your usecase
3. Running your pipeline for the first time
The dlt
cli has also created a main pipeline script for you at chess_pipeline.py
, as well as a folder chess
that contains additional python files for your source. These files are your local copies which you can modify to fit your needs. In some cases you may find that you only need to do small changes to your pipelines or add some configurations, in other cases these files can serve as a working starting point for your code, but will need to be adjusted to do what you need them to do.
The main pipeline script will look something like this:
import dlt
from chess import source
def load_players_games_example(start_month: str, end_month: str) -> None:
"""Constructs a pipeline that will load chess games of specific players for a range of months."""
# configure the pipeline: provide the destination and dataset name to which the data should go
pipeline = dlt.pipeline(
pipeline_name="chess_pipeline",
destination='postgres',
dataset_name="chess_players_games_data",
)
# create the data source by providing a list of players and start/end month in YYYY/MM format
data = source(
["magnuscarlsen", "vincentkeymer", "dommarajugukesh", "rpragchess"],
start_month=start_month,
end_month=end_month,
)
# load the "players_games" and "players_profiles" out of all the possible resources
info = pipeline.run(data.with_resources("players_games", "players_profiles"))
print(info)
def load_players_online_status() -> None:
"""Constructs a pipeline that will append online status of selected players"""
pipeline = dlt.pipeline(
pipeline_name="chess_pipeline",
destination='postgres',
dataset_name="chess_players_games_data",
)
data = source(["magnuscarlsen", "vincentkeymer", "dommarajugukesh", "rpragchess"])
info = pipeline.run(data.with_resources("players_online_status"))
print(info)
def load_players_games_incrementally() -> None:
"""Pipeline will not load the same game archive twice"""
# loads games for 11.2022
load_players_games_example("2022/11", "2022/11")
# second load skips games for 11.2022 but will load for 12.2022
load_players_games_example("2022/11", "2022/12")
if __name__ == "__main__":
# run our main example
load_players_games_example("2022/11", "2022/12")
load_players_online_status()
Provided you have set up your credentials, you can run your pipeline like a regular python script with the following command:
python chess_pipeline.py
4. Inspecting your load result
You can now inspect the state of your pipeline with the dlt
cli:
dlt pipeline chess_pipeline info
You can also use streamlit to inspect the contents of your YugabyteDB
destination for this:
# install streamlit
pip install streamlit
# run the streamlit app for your pipeline with the dlt cli:
dlt pipeline chess_pipeline show
5. Next steps to get your pipeline running in production
One of the beauties of dlt
is, that we are just a plain Python library, so you can run your pipeline in any environment that supports Python >= 3.8. We have a couple of helpers and guides in our docs to get you there:
The Deploy section will show you how to deploy your pipeline to
- Deploy with GitHub Actions: Learn how to deploy your
dlt
pipeline using GitHub Actions. Follow the step-by-step guide here. - Deploy with Airflow: Discover how to deploy your
dlt
pipeline using Airflow and Google Composer. Check out the detailed instructions here. - Deploy with Google Cloud Functions: Explore how to deploy your
dlt
pipeline using Google Cloud Functions. Get started by following the guide here. - More Deployment Options: Find additional methods and guides for deploying your
dlt
pipeline here.
The running in production section will teach you about:
- How to Monitor your pipeline: Learn how to effectively monitor your
dlt
pipeline to ensure smooth and efficient data processing. How to Monitor your pipeline - Set up alerts: Set up alerts to get notified of any issues or changes in your
dlt
pipeline, ensuring you can act quickly to resolve any problems. Set up alerts - Set up tracing: Implement tracing to gain detailed insights into the execution of your
dlt
pipeline, helping you to debug and optimize performance. And set up tracing
Available Sources and Resources
For this verified source the following sources and resources are available
Source chess
The Chess.com source provides data on player profiles, online statuses, and historical game details.
Resource Name | Write Disposition | Description |
---|---|---|
players_games | append | This resource retrieves players' games that happened between a specified start and end month. It includes various details like accuracy, ratings, results, time control, tournament details, etc. for both the black and white players in each game. |
players_online_status | append | This resource checks the current online status of multiple chess players. It retrieves their username, status, last login date, and check time. |
players_profiles | replace | This resource retrieves player profiles for a list of player usernames. It includes details like the player's avatar, country, followers, streaming status, join date, last online time, league, location, name, player ID, status, title, URL, username, and verification status. |
Additional pipeline guides
- Load data from GitHub to YugabyteDB in python with dlt
- Load data from Azure Cloud Storage to Databricks in python with dlt
- Load data from The Local Filesystem to Dremio in python with dlt
- Load data from Box Platform API to DuckDB in python with dlt
- Load data from Zendesk to Supabase in python with dlt
- Load data from Airtable to Neon Serverless Postgres in python with dlt
- Load data from Capsule CRM to The Local Filesystem in python with dlt
- Load data from Keap to Neon Serverless Postgres in python with dlt
- Load data from Stripe to BigQuery in python with dlt
- Load data from Adobe Analytics to The Local Filesystem in python with dlt