Python Guide: Loading Slack Data to Azure Storage with dlt
Join our Slack community or book a call with our support engineer Violetta.
Welcome to our technical documentation. It provides instructions on how to load data from slack
, a business messaging application, into Azure Cloud Storage
, a service for storing data on Microsoft Azure. The process is facilitated by dlt
, an open-source Python library. Data can be uploaded in JSONL, Parquet, or CSV formats, allowing the creation of datalakes within Azure Cloud Storage
. For more information on slack
, please visit https://slack.com. This guide will walk you through the steps to use dlt
for data transfer between slack
and Azure Cloud Storage
.
dlt
Key Features
- Pipeline Metadata:
dlt
pipelines utilize metadata to provide governance capabilities, ensuring data traceability and lineage. Learn more about data lineage. - Schema Enforcement and Curation:
dlt
allows users to enforce and curate schemas, maintaining data integrity and facilitating standardized data handling practices. Read more about how to Adjust a schema. - Schema Evolution Alerts:
dlt
proactively alerts users to schema changes, allowing stakeholders to take necessary actions. This contributes to better data management practices and overall data governance. - Scaling and Finetuning:
dlt
offers several mechanisms and configuration options to scale up and finetune pipelines, including parallel execution and memory buffer adjustments. Learn more about performance. - Community Support:
dlt
has a growing community that supports many features and use cases. Join the Slack community to find recent releases or discuss what you can build withdlt
.
Getting started with your pipeline locally
0. Prerequisites
dlt
requires Python 3.8 or higher. Additionally, you need to have the pip
package manager installed, and we recommend using a virtual environment to manage your dependencies. You can learn more about preparing your computer for dlt in our installation reference.
1. Install dlt
First you need to install the dlt
library with the correct extras for Azure Cloud Storage
:
pip install "dlt[filesystem]"
The dlt
cli has a useful command to get you started with any combination of source and destination. For this example, we want to load data from Slack
to Azure Cloud Storage
. You can run the following commands to create a starting point for loading data from Slack
to Azure Cloud Storage
:
# create a new directory
mkdir slack_pipeline
cd slack_pipeline
# initialize a new pipeline with your source and destination
dlt init slack filesystem
# install the required dependencies
pip install -r requirements.txt
The last command will install the required dependencies for your pipeline. The dependencies are listed in the requirements.txt
:
dlt[filesystem]>=0.3.12
You now have the following folder structure in your project:
slack_pipeline/
├── .dlt/
│ ├── config.toml # configs for your pipeline
│ └── secrets.toml # secrets for your pipeline
├── slack/ # folder with source specific files
│ └── ...
├── slack_pipeline.py # your main pipeline script
├── requirements.txt # dependencies for your pipeline
└── .gitignore # ignore files for git (not required)
2. Configuring your source and destination credentials
The dlt
cli will have created a .dlt
directory in your project folder. This directory contains a config.toml
file and a secrets.toml
file that you can use to configure your pipeline. The automatically created version of these files look like this:
generated config.toml
# put your configuration values here
[runtime]
log_level="WARNING" # the system log level of dlt
# use the dlthub_telemetry setting to enable/disable anonymous usage data reporting, see https://dlthub.com/docs/telemetry
dlthub_telemetry = true
generated secrets.toml
# put your secret values and credentials here. do not share this file and do not push it to github
[sources.slack]
access_token = "access_token" # please set me up!
[destination.filesystem]
dataset_name = "dataset_name" # please set me up!
bucket_url = "bucket_url" # please set me up!
[destination.filesystem.credentials]
aws_access_key_id = "aws_access_key_id" # please set me up!
aws_secret_access_key = "aws_secret_access_key" # please set me up!
2.1. Adjust the generated code to your usecase
The default filesystem destination is configured to connect to AWS S3. To load to Azure Cloud Storage, update the [destination.filesystem.credentials]
section in your secrets.toml
.
[destination.filesystem.credentials]
azure_storage_account_name="Please set me up!"
azure_storage_account_key="Please set me up!"
By default, the filesystem destination will store your files as JSONL
. You can tell your pipeline to choose a different format with the loader_file_format
property that you can set directly on the pipeline or via your config.toml
. Available values are jsonl
, parquet
and csv
:
[pipeline] # in ./dlt/config.toml
loader_file_format="parquet"
3. Running your pipeline for the first time
The dlt
cli has also created a main pipeline script for you at slack_pipeline.py
, as well as a folder slack
that contains additional python files for your source. These files are your local copies which you can modify to fit your needs. In some cases you may find that you only need to do small changes to your pipelines or add some configurations, in other cases these files can serve as a working starting point for your code, but will need to be adjusted to do what you need them to do.
The main pipeline script will look something like this:
"""Pipeline to load slack into duckdb."""
from typing import List
import dlt
from pendulum import datetime
from slack import slack_source
def load_all_resources(replies: bool = False) -> None:
"""Load all resources from slack without any selection of channels."""
pipeline = dlt.pipeline(
pipeline_name="slack", destination='filesystem', dataset_name="slack_data"
)
source = slack_source(
page_size=1000,
start_date=datetime(2023, 9, 1),
end_date=datetime(2023, 9, 8),
replies=replies,
)
# Uncomment the following line to load only the access_logs resource. It is not selected
# by default because it is a resource just available on paid accounts.
# source.access_logs.selected = True
load_info = pipeline.run(
source,
)
print(load_info)
def select_resource(selected_channels: List[str]) -> None:
"""Execute a pipeline that will load the given Slack list of channels with the selected
channels incrementally beginning at the given start date."""
pipeline = dlt.pipeline(
pipeline_name="slack", destination='filesystem', dataset_name="slack_data"
)
source = slack_source(
page_size=20,
selected_channels=selected_channels,
start_date=datetime(2023, 9, 1),
end_date=datetime(2023, 9, 8),
).with_resources("channels", "1-announcements", "dlt-github-ci")
load_info = pipeline.run(
source,
)
print(load_info)
def get_users() -> None:
"""Execute a pipeline that will load Slack users list."""
pipeline = dlt.pipeline(
pipeline_name="slack", destination='filesystem', dataset_name="slack_data"
)
source = slack_source(
page_size=20,
).with_resources("users")
load_info = pipeline.run(
source,
)
print(load_info)
if __name__ == "__main__":
# Add your desired resources to the list...
# resources = ["access_logs", "conversations", "conversations_history"]
# load_all_resources()
# load all resources with replies
# load_all_resources(replies=True)
# select_resource(selected_channels=["dlt-github-ci"])
# select_resource(selected_channels=["1-announcements", "dlt-github-ci"])
get_users()
Provided you have set up your credentials, you can run your pipeline like a regular python script with the following command:
python slack_pipeline.py
4. Inspecting your load result
You can now inspect the state of your pipeline with the dlt
cli:
dlt pipeline slack info
You can also use streamlit to inspect the contents of your Azure Cloud Storage
destination for this:
# install streamlit
pip install streamlit
# run the streamlit app for your pipeline with the dlt cli:
dlt pipeline slack show
5. Next steps to get your pipeline running in production
One of the beauties of dlt
is, that we are just a plain Python library, so you can run your pipeline in any environment that supports Python >= 3.8. We have a couple of helpers and guides in our docs to get you there:
The Deploy section will show you how to deploy your pipeline to
- Deploy with GitHub Actions: Learn how to deploy your
dlt
pipeline using GitHub Actions for CI/CD. Follow the step-by-step guide here. - Deploy with Airflow and Google Composer: Discover how to deploy your
dlt
pipeline with Airflow and Google Composer. Detailed instructions can be found here. - Deploy with Google Cloud Functions: Explore the process of deploying your
dlt
pipeline using Google Cloud Functions. Check out the guide here. - More Deployment Options: For additional deployment methods and detailed walkthroughs, visit the comprehensive guide here.
The running in production section will teach you about:
- How to Monitor your pipeline: Learn how to effectively monitor your
dlt
pipeline in production to ensure smooth operation and timely detection of issues. How to Monitor your pipeline - Set up alerts: Setting up alerts helps you stay informed about the state of your pipeline and quickly respond to any issues that arise. Set up alerts
- Set up tracing: Implement tracing to get detailed insights into the execution of your
dlt
pipeline, including timing information and configuration details. And set up tracing
Additional pipeline guides
- Load data from Klaviyo to AlloyDB in python with dlt
- Load data from Klarna to AWS S3 in python with dlt
- Load data from Microsoft SQL Server to Dremio in python with dlt
- Load data from Sentry to MotherDuck in python with dlt
- Load data from Imgur to The Local Filesystem in python with dlt
- Load data from Klarna to AWS Athena in python with dlt
- Load data from Attio to Dremio in python with dlt
- Load data from GitHub to Azure Synapse in python with dlt
- Load data from Coinbase to ClickHouse in python with dlt
- Load data from Google Sheets to Redshift in python with dlt