Load Data from Rest API
to Timescale
Using dlt
in Python
This example demonstrates how to use the rest_api to retrieve data from the GitHub Rest API, but will work with any HTTP Rest API. Please read:
- The rest_api docs to learn how to configure this verified source
- The OpenAPI generator docs to learn how to automatically configure a dlt rest_api source from an OpenAPI spec
- Our cool google colab example demonstrating the generator and the rest_api source
We will be using the dlt PostgreSQL destination to connect to Timescale. You can get the connection string for your timescale database as described in the Timescale Docs.
Join our Slack community or book a call with our support engineer Violetta.
The rest_api
verified source supports fetching data from any HTTP Rest API
and loading it into Timescale
. Timescale
is built on PostgreSQL and is engineered to handle demanding workloads such as time series, vector, events, and analytics data. The process uses the open-source Python library dlt
. This combination provides a robust solution for data ingestion and management. With dlt
, you can efficiently extract data from various APIs and load it into Timescale
, benefiting from its high performance and expert support. For more details, visit this link.
dlt
Key Features
- Fetching data from the GitHub API: Learn how to fetch data from the GitHub API efficiently. Read more
- Data Lineage and Governance: Understand how
dlt
pipelines leverage metadata for robust data governance, including data lineage and schema enforcement. Read more - Schema Enforcement and Curation: Ensure data consistency and quality with schema enforcement and curation in
dlt
pipelines. Read more - Scalable Data Extraction: Utilize iterators, chunking, and parallelization techniques for efficient data extraction. Read more
- Handling Secrets Securely: Learn how to securely handle secrets in your data pipeline. Read more
Getting started with your pipeline locally
0. Prerequisites
dlt
requires Python 3.8 or higher. Additionally, you need to have the pip
package manager installed, and we recommend using a virtual environment to manage your dependencies. You can learn more about preparing your computer for dlt in our installation reference.
1. Install dlt
First you need to install the dlt
library with the correct extras for Timescale
:
pip install "dlt[postgres]"
The dlt
cli has a useful command to get you started with any combination of source and destination. For this example, we want to load data from Rest API
to Timescale
. You can run the following commands to create a starting point for loading data from Rest API
to Timescale
:
# create a new directory
mkdir rest_api_pipeline
cd rest_api_pipeline
# initialize a new pipeline with your source and destination
dlt init rest_api postgres
# install the required dependencies
pip install -r requirements.txt
The last command will install the required dependencies for your pipeline. The dependencies are listed in the requirements.txt
:
dlt[postgres]>=0.4.11
You now have the following folder structure in your project:
rest_api_pipeline/
├── .dlt/
│ ├── config.toml # configs for your pipeline
│ └── secrets.toml # secrets for your pipeline
├── rest_api/ # folder with source specific files
│ └── ...
├── rest_api_pipeline.py # your main pipeline script
├── requirements.txt # dependencies for your pipeline
└── .gitignore # ignore files for git (not required)
2. Configuring your source and destination credentials
The dlt
cli will have created a .dlt
directory in your project folder. This directory contains a config.toml
file and a secrets.toml
file that you can use to configure your pipeline. The automatically created version of these files look like this:
generated config.toml
# put your configuration values here
[runtime]
log_level="WARNING" # the system log level of dlt
# use the dlthub_telemetry setting to enable/disable anonymous usage data reporting, see https://dlthub.com/docs/telemetry
dlthub_telemetry = true
generated secrets.toml
# put your secret values and credentials here. do not share this file and do not push it to github
[sources.rest_api]
github_token = "github_token" # please set me up!
[destination.postgres]
dataset_name = "dataset_name" # please set me up!
[destination.postgres.credentials]
database = "database" # please set me up!
password = "password" # please set me up!
username = "username" # please set me up!
host = "host" # please set me up!
port = 5432
connect_timeout = 15
2.1. Adjust the generated code to your usecase
3. Running your pipeline for the first time
The dlt
cli has also created a main pipeline script for you at rest_api_pipeline.py
, as well as a folder rest_api
that contains additional python files for your source. These files are your local copies which you can modify to fit your needs. In some cases you may find that you only need to do small changes to your pipelines or add some configurations, in other cases these files can serve as a working starting point for your code, but will need to be adjusted to do what you need them to do.
The main pipeline script will look something like this:
from typing import Any
import dlt
from rest_api import (
RESTAPIConfig,
check_connection,
rest_api_source,
rest_api_resources,
)
@dlt.source
def github_source(github_token: str = dlt.secrets.value) -> Any:
# Create a REST API configuration for the GitHub API
# Use RESTAPIConfig to get autocompletion and type checking
config: RESTAPIConfig = {
"client": {
"base_url": "https://api.github.com/repos/dlt-hub/dlt/",
"auth": {
"type": "bearer",
"token": github_token,
},
},
# The default configuration for all resources and their endpoints
"resource_defaults": {
"primary_key": "id",
"write_disposition": "merge",
"endpoint": {
"params": {
"per_page": 100,
},
},
},
"resources": [
# This is a simple resource definition,
# that uses the endpoint path as a resource name:
# "pulls",
# Alternatively, you can define the endpoint as a dictionary
# {
# "name": "pulls", # <- Name of the resource
# "endpoint": "pulls", # <- This is the endpoint path
# }
# Or use a more detailed configuration:
{
"name": "issues",
"endpoint": {
"path": "issues",
# Query parameters for the endpoint
"params": {
"sort": "updated",
"direction": "desc",
"state": "open",
# Define `since` as a special parameter
# to incrementally load data from the API.
# This works by getting the updated_at value
# from the previous response data and using this value
# for the `since` query parameter in the next request.
"since": {
"type": "incremental",
"cursor_path": "updated_at",
"initial_value": "2024-01-25T11:21:28Z",
},
},
},
},
# The following is an example of a resource that uses
# a parent resource (`issues`) to get the `issue_number`
# and include it in the endpoint path:
{
"name": "issue_comments",
"endpoint": {
# The placeholder {issue_number} will be resolved
# from the parent resource
"path": "issues/{issue_number}/comments",
"params": {
# The value of `issue_number` will be taken
# from the `number` field in the `issues` resource
"issue_number": {
"type": "resolve",
"resource": "issues",
"field": "number",
}
},
},
# Include data from `id` field of the parent resource
# in the child data. The field name in the child data
# will be called `_issues_id` (_{resource_name}_{field_name})
"include_from_parent": ["id"],
},
],
}
yield from rest_api_resources(config)
def load_github() -> None:
pipeline = dlt.pipeline(
pipeline_name="rest_api_github",
destination='postgres',
dataset_name="rest_api_data",
)
load_info = pipeline.run(github_source())
print(load_info)
def load_pokemon() -> None:
pipeline = dlt.pipeline(
pipeline_name="rest_api_pokemon",
destination='postgres',
dataset_name="rest_api_data",
)
pokemon_source = rest_api_source(
{
"client": {
"base_url": "https://pokeapi.co/api/v2/",
# If you leave out the paginator, it will be inferred from the API:
# paginator: "json_response",
},
"resource_defaults": {
"endpoint": {
"params": {
"limit": 1000,
},
},
},
"resources": [
"pokemon",
"berry",
"location",
],
}
)
def check_network_and_authentication() -> None:
(can_connect, error_msg) = check_connection(
pokemon_source,
"not_existing_endpoint",
)
if not can_connect:
pass # do something with the error message
check_network_and_authentication()
load_info = pipeline.run(pokemon_source)
print(load_info)
if __name__ == "__main__":
load_github()
load_pokemon()
Provided you have set up your credentials, you can run your pipeline like a regular python script with the following command:
python rest_api_pipeline.py
4. Inspecting your load result
You can now inspect the state of your pipeline with the dlt
cli:
dlt pipeline rest_api_github info
You can also use streamlit to inspect the contents of your Timescale
destination for this:
# install streamlit
pip install streamlit
# run the streamlit app for your pipeline with the dlt cli:
dlt pipeline rest_api_github show
5. Next steps to get your pipeline running in production
One of the beauties of dlt
is, that we are just a plain Python library, so you can run your pipeline in any environment that supports Python >= 3.8. We have a couple of helpers and guides in our docs to get you there:
The Deploy section will show you how to deploy your pipeline to
- Deploy with GitHub Actions: Learn how to deploy your
dlt
pipeline using GitHub Actions for CI/CD. Follow the guide here. - Deploy with Airflow and Google Composer: Discover how to deploy your
dlt
pipeline with Airflow and Google Composer for managed workflows. Detailed instructions can be found here. - Deploy with Google Cloud Functions: Explore the steps to deploy your
dlt
pipeline using Google Cloud Functions. Check out the guide here. - Additional Deployment Options: Find more deployment options and detailed guides for deploying
dlt
pipelines in various environments here.
The running in production section will teach you about:
- How to Monitor your pipeline: Learn how to effectively monitor your
dlt
pipeline in production to ensure smooth operations and quick issue detection. Read more - Set up alerts: Set up alerts to get notified about any issues or important events in your
dlt
pipeline, ensuring you can respond promptly. Read more - Set up tracing: Implement tracing to gain detailed insights into the performance and behavior of your
dlt
pipeline, aiding in debugging and optimization. Read more
Available Sources and Resources
For this verified source the following sources and resources are available
Source github_source
"Rest API Source for GitHub, providing detailed data on issues and related comments."
Resource Name | Write Disposition | Description |
---|---|---|
issue_comments | merge | Contains information about the issue comments including the author, body of the comment, created date, and user details among other data. |
issues | merge | Contains information about the issues including the assignee details, author, body of the issue, comments, created date, and user details among other data. |
Additional pipeline guides
- Load data from Chess.com to BigQuery in python with dlt
- Load data from PostgreSQL to MotherDuck in python with dlt
- Load data from IBM Db2 to YugabyteDB in python with dlt
- Load data from DigitalOcean to Azure Cloud Storage in python with dlt
- Load data from Pinterest to EDB BigAnimal in python with dlt
- Load data from Klarna to Microsoft SQL Server in python with dlt
- Load data from X to Google Cloud Storage in python with dlt
- Load data from Pinterest to Snowflake in python with dlt
- Load data from Imgur to YugabyteDB in python with dlt
- Load data from Aladtec to Azure Synapse in python with dlt