Loading Data from Qualtrics
to AWS S3
with dlt
in Python
Join our Slack community or book a call with our support engineer Violetta.
This documentation provides a guide on loading data from Qualtrics
, a cloud-based survey platform, to AWS S3
using the open-source Python library dlt
. Qualtrics
enables users to create, distribute, and analyze surveys, while AWS S3
serves as a destination for storing data, facilitating the creation of datalakes. Data can be uploaded in formats such as JSONL, Parquet, or CSV. This guide will walk you through the steps necessary to set up and execute the data pipeline, ensuring efficient data transfer and storage. For more information about Qualtrics
, visit their website.
dlt
Key Features
- Governance Support:
dlt
pipelines offer robust governance capabilities including metadata utilization, schema enforcement, and schema change alerts. Learn more - Scalability:
dlt
ensures scalable data extraction using iterators, chunking, and parallelization techniques. Discover scalability - Schema Enforcement and Curation: Maintain data integrity and consistency by enforcing and curating schemas in your
dlt
pipelines. Read more - Implicit Extraction DAGs: Automatically handle dependencies between data sources and transformations using implicit extraction DAGs. Explore DAGs
- Performance Optimization: Fine-tune memory buffers, intermediary file sizes, and compression options to optimize performance. Optimize performance
Getting started with your pipeline locally
dlt-init-openapi
0. Prerequisites
dlt
and dlt-init-openapi
requires Python 3.9 or higher. Additionally, you need to have the pip
package manager installed, and we recommend using a virtual environment to manage your dependencies. You can learn more about preparing your computer for dlt in our installation reference.
1. Install dlt and dlt-init-openapi
First you need to install the dlt-init-openapi
cli tool.
pip install dlt-init-openapi
The dlt-init-openapi
cli is a powerful generator which you can use to turn any OpenAPI spec into a dlt
source to ingest data from that api. The quality of the generator source is dependent on how well the API is designed and how accurate the OpenAPI spec you are using is. You may need to make tweaks to the generated code, you can learn more about this here.
# generate pipeline
# NOTE: add_limit adds a global limit, you can remove this later
# NOTE: you will need to select which endpoints to render, you
# can just hit Enter and all will be rendered.
dlt-init-openapi qualtrics --url https://raw.githubusercontent.com/dlt-hub/openapi-specs/main/open_api_specs/Business/qualtrics.yaml --global-limit 2
cd qualtrics_pipeline
# install generated requirements
pip install -r requirements.txt
The last command will install the required dependencies for your pipeline. The dependencies are listed in the requirements.txt
:
dlt>=0.4.12
You now have the following folder structure in your project:
qualtrics_pipeline/
├── .dlt/
│ ├── config.toml # configs for your pipeline
│ └── secrets.toml # secrets for your pipeline
├── rest_api/ # The rest api verified source
│ └── ...
├── qualtrics/
│ └── __init__.py # TODO: possibly tweak this file
├── qualtrics_pipeline.py # your main pipeline script
├── requirements.txt # dependencies for your pipeline
└── .gitignore # ignore files for git (not required)
1.1. Tweak qualtrics/__init__.py
This file contains the generated configuration of your rest_api. You can continue with the next steps and leave it as is, but you might want to come back here and make adjustments if you need your rest_api
source set up in a different way. The generated file for the qualtrics source will look like this:
Click to view full file (97 lines)
from typing import List
import dlt
from dlt.extract.source import DltResource
from rest_api import rest_api_source
from rest_api.typing import RESTAPIConfig
@dlt.source(name="qualtrics_source", max_table_nesting=2)
def qualtrics_source(
api_key: str = dlt.secrets.value,
base_url: str = dlt.config.value,
) -> List[DltResource]:
# source configuration
source_config: RESTAPIConfig = {
"client": {
"base_url": base_url,
"auth": {
"type": "api_key",
"api_key": api_key,
"name": "X-API-TOKEN",
"location": "header"
},
},
"resources":
[
# Gets all distributions for a given survey
{
"name": "distribution",
"table_name": "distribution",
"primary_key": "id",
"write_disposition": "merge",
"endpoint": {
"data_selector": "result.elements",
"path": "/distributions",
"params": {
"surveyId": "FILL_ME_IN", # TODO: fill in required query parameter
},
"paginator": "auto",
}
},
# Get event subscriptions
{
"name": "event_subscriptions_response",
"table_name": "event_subscriptions_response",
"endpoint": {
"data_selector": "$",
"path": "/eventsubscriptions/{SubscriptionId}",
"params": {
"SubscriptionId": "FILL_ME_IN", # TODO: fill in required path parameter
},
"paginator": "auto",
}
},
# Retrieves all the individual links for a given distribution
{
"name": "link",
"table_name": "link",
"endpoint": {
"data_selector": "result.elements",
"path": "/distributions/{DistributionId}/links",
"params": {
"DistributionId": {
"type": "resolve",
"resource": "distribution",
"field": "id",
},
"surveyId": "FILL_ME_IN", # TODO: fill in required query parameter
},
"paginator": "auto",
}
},
# Gets a single Qualtrics survey speficied by its ID
{
"name": "survey_response",
"table_name": "survey_response",
"endpoint": {
"data_selector": "$",
"path": "/survey-definitions/{SurveyId}",
"params": {
"SurveyId": "FILL_ME_IN", # TODO: fill in required path parameter
},
"paginator": "auto",
}
},
]
}
return rest_api_source(source_config)
2. Configuring your source and destination credentials
dlt-init-openapi
will try to detect which authentication mechanism (if any) is used by the API in question and add a placeholder in your secrets.toml
.
The dlt
cli will have created a .dlt
directory in your project folder. This directory contains a config.toml
file and a secrets.toml
file that you can use to configure your pipeline. The automatically created version of these files look like this:
generated config.toml
[runtime]
log_level="INFO"
[sources.qualtrics]
# Base URL for the API
base_url = "https://fra1.qualtrics.com/API/v3"
generated secrets.toml
[sources.qualtrics]
# secrets for your qualtrics source
api_key = "FILL ME OUT" # TODO: fill in your credentials
2.1. Adjust the generated code to your usecase
At this time, the dlt-init-openapi
cli tool will always create pipelines that load to a local duckdb
instance. Switching to a different destination is trivial, all you need to do is change the destination
parameter in qualtrics_pipeline.py
to filesystem and supply the credentials as outlined in the destination doc linked below.
By default, the filesystem destination will store your files as JSONL
. You can tell your pipeline to choose a different format with the loader_file_format
property that you can set directly on the pipeline or via your config.toml
. Available values are jsonl
, parquet
and csv
:
[pipeline] # in ./dlt/config.toml
loader_file_format="parquet"
3. Running your pipeline for the first time
The dlt
cli has also created a main pipeline script for you at qualtrics_pipeline.py
, as well as a folder qualtrics
that contains additional python files for your source. These files are your local copies which you can modify to fit your needs. In some cases you may find that you only need to do small changes to your pipelines or add some configurations, in other cases these files can serve as a working starting point for your code, but will need to be adjusted to do what you need them to do.
The main pipeline script will look something like this:
import dlt
from qualtrics import qualtrics_source
if __name__ == "__main__":
pipeline = dlt.pipeline(
pipeline_name="qualtrics_pipeline",
destination='duckdb',
dataset_name="qualtrics_data",
progress="log",
export_schema_path="schemas/export"
)
source = qualtrics_source()
info = pipeline.run(source)
print(info)
Provided you have set up your credentials, you can run your pipeline like a regular python script with the following command:
python qualtrics_pipeline.py
4. Inspecting your load result
You can now inspect the state of your pipeline with the dlt
cli:
dlt pipeline qualtrics_pipeline info
You can also use streamlit to inspect the contents of your AWS S3
destination for this:
# install streamlit
pip install streamlit
# run the streamlit app for your pipeline with the dlt cli:
dlt pipeline qualtrics_pipeline show
5. Next steps to get your pipeline running in production
One of the beauties of dlt
is, that we are just a plain Python library, so you can run your pipeline in any environment that supports Python >= 3.8. We have a couple of helpers and guides in our docs to get you there:
The Deploy section will show you how to deploy your pipeline to
- Deploy with GitHub Actions: Learn how to deploy your
dlt
pipeline using GitHub Actions. Follow the guide here. - Deploy with Airflow: Discover how to deploy your
dlt
pipeline using Airflow and Google Composer. Detailed steps can be found here. - Deploy with Google Cloud Functions: Understand the process of deploying your
dlt
pipeline using Google Cloud Functions. The guide is available here. - Explore Other Deployment Options: Find various other methods to deploy your
dlt
pipeline here.
The running in production section will teach you about:
- How to Monitor your pipeline: Learn how to effectively monitor your
dlt
pipeline in production to ensure smooth operation and quick identification of issues. How to Monitor your pipeline - Set up alerts: Configure alerts to stay informed about the status and performance of your
dlt
pipeline, helping you to promptly address any problems. Set up alerts - Set up tracing: Implement tracing to gain detailed insights into the execution of your
dlt
pipeline, including timing information and configuration details. And set up tracing
Available Sources and Resources
For this verified source the following sources and resources are available
Source Qualtrics
Collects survey responses, distribution data, and event subscription details from Qualtrics.
Resource Name | Write Disposition | Description |
---|---|---|
distribution | append | Details about the distribution of surveys to respondents |
link | append | Information about the links generated for survey distribution |
survey_response | append | Responses collected from the distributed surveys |
event_subscriptions_response | append | Data related to event subscriptions and their responses |
Additional pipeline guides
- Load data from Aladtec to Snowflake in python with dlt
- Load data from MySQL to BigQuery in python with dlt
- Load data from Mux to PostgreSQL in python with dlt
- Load data from Chargebee to CockroachDB in python with dlt
- Load data from Cisco Meraki to Google Cloud Storage in python with dlt
- Load data from Aladtec to AWS Athena in python with dlt
- Load data from Spotify to BigQuery in python with dlt
- Load data from Oracle Database to AWS S3 in python with dlt
- Load data from Oracle Database to DuckDB in python with dlt
- Load data from Attio to BigQuery in python with dlt