Skip to main content

Loading Data from Adobe Analytics to Databricks Using dlt in Python

Need help deploying these pipelines, or figuring out how to run them in your data stack?

Join our Slack community or book a call with our support engineer Violetta.

Adobe Analytics is a tool for tracking and analyzing website and app traffic. It provides deep insights into user behavior, enabling businesses to optimize their digital marketing strategies, improve user experiences, and drive better decision-making through data-driven insights. Databricks is a unified data analytics platform, from the original creators of Apache Spark™, that accelerates innovation by unifying data science, engineering, and business. This documentation will guide you on how to load data from Adobe Analytics to Databricks using the open-source Python library dlt. For more details on Adobe Analytics, visit here.

dlt Key Features

  • Automated maintenance: With schema inference and evolution and alerts, and with short declarative code, maintenance becomes simple. Learn more
  • Run it where Python runs: On Airflow, serverless functions, notebooks. No external APIs, backends or containers, scales on micro and large infra alike. Learn more
  • User-friendly interface: Declarative interface that removes knowledge obstacles for beginners while empowering senior professionals. Learn more
  • Scalability: Offers several mechanisms and configuration options to scale up and finetune pipelines. Learn more
  • Governance support: Provides robust governance through pipeline metadata, schema enforcement and curation, and schema change alerts. Learn more

Getting started with your pipeline locally

OpenAPI Source Generator dlt-init-openapi

This walkthrough makes use of the dlt-init-openapi generator cli tool. You can read more about it here. The code generated by this tool uses the dlt rest_api verified source, docs for this are here.

0. Prerequisites

dlt and dlt-init-openapi requires Python 3.9 or higher. Additionally, you need to have the pip package manager installed, and we recommend using a virtual environment to manage your dependencies. You can learn more about preparing your computer for dlt in our installation reference.

1. Install dlt and dlt-init-openapi

First you need to install the dlt-init-openapi cli tool.

pip install dlt-init-openapi

The dlt-init-openapi cli is a powerful generator which you can use to turn any OpenAPI spec into a dlt source to ingest data from that api. The quality of the generator source is dependent on how well the API is designed and how accurate the OpenAPI spec you are using is. You may need to make tweaks to the generated code, you can learn more about this here.

# generate pipeline
# NOTE: add_limit adds a global limit, you can remove this later
# NOTE: you will need to select which endpoints to render, you
# can just hit Enter and all will be rendered.
dlt-init-openapi adobe_analytics --url https://raw.githubusercontent.com/dlt-hub/openapi-specs/main/open_api_specs/Business/adobe_analytics.yaml --global-limit 2
cd adobe_analytics_pipeline
# install generated requirements
pip install -r requirements.txt

The last command will install the required dependencies for your pipeline. The dependencies are listed in the requirements.txt:

dlt>=0.4.12

You now have the following folder structure in your project:

adobe_analytics_pipeline/
├── .dlt/
│ ├── config.toml # configs for your pipeline
│ └── secrets.toml # secrets for your pipeline
├── rest_api/ # The rest api verified source
│ └── ...
├── adobe_analytics/
│ └── __init__.py # TODO: possibly tweak this file
├── adobe_analytics_pipeline.py # your main pipeline script
├── requirements.txt # dependencies for your pipeline
└── .gitignore # ignore files for git (not required)

1.1. Tweak adobe_analytics/__init__.py

This file contains the generated configuration of your rest_api. You can continue with the next steps and leave it as is, but you might want to come back here and make adjustments if you need your rest_api source set up in a different way. The generated file for the adobe_analytics source will look like this:

Click to view full file (325 lines)

from typing import List

import dlt
from dlt.extract.source import DltResource
from rest_api import rest_api_source
from rest_api.typing import RESTAPIConfig


@dlt.source(name="adobe_analytics_source", max_table_nesting=2)
def adobe_analytics_source(
base_url: str = dlt.config.value,
) -> List[DltResource]:

# source configuration
source_config: RESTAPIConfig = {
"client": {
"base_url": base_url,
"paginator": {
"type":
"page_number",
"page_param":
"page",
"total_path":
"",
"maximum_page":
20,
},
},
"resources":
[
# A calculated metric response will always include these default items: *id, name, description, rsid, owner, polarity, precision, type* Other attributes can be optionally requested through the 'expansion' field: * *modified*: Date that the metric was last modified (ISO 8601) * *definition*: Calculated metric definition as JSON object * *compatibility*: Products that the metric is compatible with * *reportSuiteName*: Also return the friendly Report Suite name for the RSID * *tags*: Gives all existing tags associated with the calculated metric For more information about calculated metrics go [here](https://github.com/AdobeDocs/analytics-2.0-apis/blob/master/calculatedmetrics.md)
{
"name": "find_calculated_metrics",
"table_name": "analytics_calculated_metric",
"primary_key": "id",
"write_disposition": "merge",
"endpoint": {
"data_selector": "$",
"path": "/calculatedmetrics",
"params": {
# the parameters below can optionally be configured
# "rsids": "OPTIONAL_CONFIG",
# "ownerId": "OPTIONAL_CONFIG",
# "calculatedMetricFilter": "OPTIONAL_CONFIG",
# "locale": "en_US",
# "name": "OPTIONAL_CONFIG",
# "tagNames": "OPTIONAL_CONFIG",
# "limit": "10",
# "expansion": "OPTIONAL_CONFIG",

},
}
},
# A calculated metric response will always include these default items: *id, name, description, rsid, owner, polarity, precision, type* Other attributes can be optionally requested through the 'expansion' field: * *modified*: Date that the metric was last modified (ISO 8601) * *definition*: Calculated metric definition as JSON object * *compatibility*: Products that the metric is compatible with * *reportSuiteName*: Also return the friendly Report Suite name for the RSID * *tags*: Gives all existing tags associated with the calculated metric For more information about calculated metrics go [here](https://github.com/AdobeDocs/analytics-2.0-apis/blob/master/calculatedmetrics.md)
{
"name": "find_one_calculated_metric",
"table_name": "analytics_calculated_metric",
"primary_key": "id",
"write_disposition": "merge",
"endpoint": {
"data_selector": "$",
"path": "/calculatedmetrics/{id}",
"params": {
"id": {
"type": "resolve",
"resource": "find_calculated_metrics",
"field": "id",
},
# the parameters below can optionally be configured
# "locale": "en_US",
# "expansion": "OPTIONAL_CONFIG",

},
}
},
{
"name": "get_date_range",
"table_name": "analytics_date_range",
"primary_key": "id",
"write_disposition": "merge",
"endpoint": {
"data_selector": "$",
"path": "/dateranges/{dateRangeId}",
"params": {
"dateRangeId": {
"type": "resolve",
"resource": "get_date_ranges",
"field": "id",
},
# the parameters below can optionally be configured
# "locale": "en_US",
# "expansion": "OPTIONAL_CONFIG",

},
}
},
{
"name": "dimensions_get_dimensions",
"table_name": "analytics_dimension",
"primary_key": "id",
"write_disposition": "merge",
"endpoint": {
"data_selector": "$",
"path": "/dimensions",
"params": {
"rsid": "FILL_ME_IN", # TODO: fill in required query parameter
# the parameters below can optionally be configured
# "locale": "en_US",
# "segmentable": "OPTIONAL_CONFIG",
# "reportable": "OPTIONAL_CONFIG",
# "classifiable": "false",
# "expansion": "OPTIONAL_CONFIG",

},
}
},
{
"name": "dimensions_get_dimension",
"table_name": "analytics_dimension",
"primary_key": "id",
"write_disposition": "merge",
"endpoint": {
"data_selector": "$",
"path": "/dimensions/{dimensionId}",
"params": {
"dimensionId": {
"type": "resolve",
"resource": "dimensions_get_dimensions",
"field": "id",
},
"rsid": "FILL_ME_IN", # TODO: fill in required query parameter
# the parameters below can optionally be configured
# "locale": "en_US",
# "expansion": "OPTIONAL_CONFIG",

},
}
},
{
"name": "get_metric",
"table_name": "analytics_metric",
"primary_key": "id",
"write_disposition": "merge",
"endpoint": {
"data_selector": "$",
"path": "/metrics/{id}",
"params": {
"id": "FILL_ME_IN", # TODO: fill in required path parameter
"rsid": "FILL_ME_IN", # TODO: fill in required query parameter
# the parameters below can optionally be configured
# "locale": "en_US",
# "expansion": "OPTIONAL_CONFIG",

},
}
},
{
"name": "segments_get_segment",
"table_name": "analytics_segment_response_item",
"primary_key": "id",
"write_disposition": "merge",
"endpoint": {
"data_selector": "$",
"path": "/segments/{id}",
"params": {
"id": {
"type": "resolve",
"resource": "segments_get_segments",
"field": "id",
},
# the parameters below can optionally be configured
# "locale": "en_US",
# "expansion": "OPTIONAL_CONFIG",

},
}
},
# Retrieves a list of all users for the company designated by the auth token.
{
"name": "find_all_users",
"table_name": "analytics_user",
"endpoint": {
"data_selector": "$",
"path": "/users",
"params": {
# the parameters below can optionally be configured
# "limit": "10",

},
}
},
{
"name": "get_current_user",
"table_name": "analytics_user",
"endpoint": {
"data_selector": "$",
"path": "/users/me",
}
},
# This returns the metrics list primarily for the Analytics product. The platform identity API Returns a list of all possible metrics for the supported systems.
{
"name": "get_metrics",
"table_name": "metric",
"endpoint": {
"data_selector": "support",
"path": "/metrics",
"params": {
"rsid": "FILL_ME_IN", # TODO: fill in required query parameter
# the parameters below can optionally be configured
# "locale": "en_US",
# "segmentable": "false",
# "expansion": "OPTIONAL_CONFIG",

},
}
},
# Returns all report suite types in a single collection.
{
"name": "get_collections",
"table_name": "suite_collection_item",
"endpoint": {
"data_selector": "$",
"path": "/collections/suites",
"params": {
# the parameters below can optionally be configured
# "rsids": "OPTIONAL_CONFIG",
# "rsidContains": "OPTIONAL_CONFIG",
# "limit": "10",
# "expansion": "OPTIONAL_CONFIG",

},
}
},
# Returns all report suite types in a single collection.
{
"name": "find_one",
"table_name": "suite_collection_item",
"primary_key": "rsid",
"write_disposition": "merge",
"endpoint": {
"data_selector": "$",
"path": "/collections/suites/{rsid}",
"params": {
"rsid": "FILL_ME_IN", # TODO: fill in required path parameter
# the parameters below can optionally be configured
# "expansion": "OPTIONAL_CONFIG",

},
}
},
# This API allows users to store commonly used date ranges so that they can be reused throughout the product.
{
"name": "get_date_ranges",
"table_name": "tag",
"primary_key": "id",
"write_disposition": "merge",
"endpoint": {
"data_selector": "tags",
"path": "/dateranges",
"params": {
# the parameters below can optionally be configured
# "locale": "en_US",
# "filterByIds": "OPTIONAL_CONFIG",
# "limit": "10",
# "expansion": "OPTIONAL_CONFIG",

},
}
},
{
"name": "segments_get_segments",
"table_name": "tag",
"primary_key": "id",
"write_disposition": "merge",
"endpoint": {
"data_selector": "tags",
"path": "/segments",
"params": {
# the parameters below can optionally be configured
# "includeType": "OPTIONAL_CONFIG",
# "rsids": "OPTIONAL_CONFIG",
# "segmentFilter": "OPTIONAL_CONFIG",
# "locale": "en_US",
# "name": "OPTIONAL_CONFIG",
# "tagNames": "OPTIONAL_CONFIG",
# "limit": "10",
# "expansion": "OPTIONAL_CONFIG",

},
}
},
# This API returns the usage and access logs for a given date range within a 3 month period. This API authenticates with an IMS user token.
{
"name": "get_usage_logs",
"table_name": "usage_logs",
"endpoint": {
"data_selector": "$",
"path": "/auditlogs/usage",
"params": {
"startDate": "FILL_ME_IN", # TODO: fill in required query parameter
"endDate": "FILL_ME_IN", # TODO: fill in required query parameter
# the parameters below can optionally be configured
# "login": "OPTIONAL_CONFIG",
# "ip": "OPTIONAL_CONFIG",
# "rsid": "OPTIONAL_CONFIG",
# "eventType": "OPTIONAL_CONFIG",
# "event": "OPTIONAL_CONFIG",
# "limit": "10",

},
"paginator": {
"type":
"page_number",
"page_param":
"page",
"total_path":
"[*].totalPages",
},
}
},
]
}

return rest_api_source(source_config)

2. Configuring your source and destination credentials

info

dlt-init-openapi will try to detect which authentication mechanism (if any) is used by the API in question and add a placeholder in your secrets.toml.

  • If you know your API needs authentication, but none was detected, you can learn more about adding authentication to the rest_api here.
  • OAuth detection currently is not supported, but you can supply your own authentication mechanism as outlined here.

The dlt cli will have created a .dlt directory in your project folder. This directory contains a config.toml file and a secrets.toml file that you can use to configure your pipeline. The automatically created version of these files look like this:

generated config.toml


[runtime]
log_level="INFO"

[sources.adobe_analytics]
# Base URL for the API
base_url = "https://analytics.adobe.io/api/{companyId}/"

generated secrets.toml


[sources.adobe_analytics]
# secrets for your adobe_analytics source
# example_api_key = "example value"

2.1. Adjust the generated code to your usecase

Further help setting up your source and destinations

At this time, the dlt-init-openapi cli tool will always create pipelines that load to a local duckdb instance. Switching to a different destination is trivial, all you need to do is change the destination parameter in adobe_analytics_pipeline.py to databricks and supply the credentials as outlined in the destination doc linked below.

  • Read more about setting up the rest_api source in our docs.
  • Read more about setting up the Databricks destination in our docs.

3. Running your pipeline for the first time

The dlt cli has also created a main pipeline script for you at adobe_analytics_pipeline.py, as well as a folder adobe_analytics that contains additional python files for your source. These files are your local copies which you can modify to fit your needs. In some cases you may find that you only need to do small changes to your pipelines or add some configurations, in other cases these files can serve as a working starting point for your code, but will need to be adjusted to do what you need them to do.

The main pipeline script will look something like this:


import dlt

from adobe_analytics import adobe_analytics_source


if __name__ == "__main__":
pipeline = dlt.pipeline(
pipeline_name="adobe_analytics_pipeline",
destination='duckdb',
dataset_name="adobe_analytics_data",
progress="log",
export_schema_path="schemas/export"
)
source = adobe_analytics_source()
info = pipeline.run(source)
print(info)

Provided you have set up your credentials, you can run your pipeline like a regular python script with the following command:

python adobe_analytics_pipeline.py

4. Inspecting your load result

You can now inspect the state of your pipeline with the dlt cli:

dlt pipeline adobe_analytics_pipeline info

You can also use streamlit to inspect the contents of your Databricks destination for this:

# install streamlit
pip install streamlit
# run the streamlit app for your pipeline with the dlt cli:
dlt pipeline adobe_analytics_pipeline show

5. Next steps to get your pipeline running in production

One of the beauties of dlt is, that we are just a plain Python library, so you can run your pipeline in any environment that supports Python >= 3.8. We have a couple of helpers and guides in our docs to get you there:

The Deploy section will show you how to deploy your pipeline to

  • Deploy with GitHub Actions: Learn how to set up and deploy your dlt pipeline using GitHub Actions. Follow the step-by-step guide here.
  • Deploy with Airflow: Discover how to deploy your dlt pipeline with Airflow and Google Composer. Detailed instructions can be found here.
  • Deploy with Google Cloud Functions: Understand how to deploy your dlt pipeline using Google Cloud Functions by following the guide here.
  • Other Deployment Methods: Explore various other methods to deploy your dlt pipeline by visiting the comprehensive guide here.

The running in production section will teach you about:

  • How to Monitor your pipeline: Learn how to effectively monitor your dlt pipelines in production to ensure they are running smoothly. How to Monitor your pipeline
  • Set up alerts: Set up alerts to get notified about any issues with your dlt pipelines, enabling proactive management and quick resolution of problems. Set up alerts
  • Set up tracing: Implement tracing to track the execution of your dlt pipelines, providing detailed information about each step and making debugging easier. And set up tracing

Available Sources and Resources

For this verified source the following sources and resources are available

Source Adobe Analytics

Adobe Analytics: Collects and analyzes user engagement, metrics, dimensions, and usage logs for informed decisions.

Resource NameWrite DispositionDescription
analytics_calculated_metricappendCustom metrics derived from existing data to provide specific insights
analytics_date_rangeappendDate ranges used for segmenting and analyzing data
suite_collection_itemappendItems collected from various suites for comprehensive analytics
usage_logsappendLogs detailing the usage patterns and behaviors of users
analytics_dimensionappendDimensions used to categorize and break down data for analysis
analytics_userappendInformation about users interacting with the website or app
analytics_metricappendStandard metrics used to measure and analyze performance
tagappendTags used for organizing and categorizing data
metricappendBasic performance metrics
analytics_segment_response_itemappendSegmented data responses for detailed analysis

Additional pipeline guides

This demo works on codespaces. Codespaces is a development environment available for free to anyone with a Github account. You'll be asked to fork the demo repository and from there the README guides you with further steps.
The demo uses the Continue VSCode extension.

Off to codespaces!

DHelp

Ask a question

Welcome to "Codex Central", your next-gen help center, driven by OpenAI's GPT-4 model. It's more than just a forum or a FAQ hub – it's a dynamic knowledge base where coders can find AI-assisted solutions to their pressing problems. With GPT-4's powerful comprehension and predictive abilities, Codex Central provides instantaneous issue resolution, insightful debugging, and personalized guidance. Get your code running smoothly with the unparalleled support at Codex Central - coding help reimagined with AI prowess.