Skip to main content

Loading Data from Mux to YugabyteDB with dlt in Python

tip

We will be using the dlt PostgreSQL destination to connect to YugabyteDB. You can get the connection string for your YugabyteDB database as described in the YugabyteDB Docs.

Need help deploying these pipelines, or figuring out how to run them in your data stack?

Join our Slack community or book a call with our support engineer Violetta.

Loading data from Mux to YugabyteDB is essential for teams building video solutions, from live-streaming platforms to on-demand video catalogs. Mux addresses complex challenges in video technology, providing robust infrastructure and tools. YugabyteDB, a distributed PostgreSQL database, ensures resilience, scalability, and geo-distribution for modern applications. Using the open-source Python library dlt, you can seamlessly integrate Mux data into YugabyteDB, leveraging PostgreSQL-compatible and Cassandra-inspired APIs. This guide will walk you through the process, ensuring efficient and reliable data handling. For more details on Mux, visit Mux.com.

dlt Key Features

  • Governance Support: dlt pipelines offer robust governance through metadata utilization, schema enforcement, and change alerts. Learn more
  • Scalability: dlt provides scalable data extraction via iterators, chunking, and parallelization, allowing efficient processing of large datasets. Learn more
  • Schema Management: dlt generates and manages schemas during the normalization process, ensuring data consistency and integrity. Learn more
  • Data Lineage: Track data loads and facilitate data lineage and traceability with load IDs and metadata. Learn more
  • Automatic Data Normalization: dlt automatically normalizes JSON data into relational tables, making it ready for loading into your chosen destination. Learn more

Getting started with your pipeline locally

0. Prerequisites

dlt requires Python 3.8 or higher. Additionally, you need to have the pip package manager installed, and we recommend using a virtual environment to manage your dependencies. You can learn more about preparing your computer for dlt in our installation reference.

1. Install dlt

First you need to install the dlt library with the correct extras for YugabyteDB:

pip install "dlt[postgres]"

The dlt cli has a useful command to get you started with any combination of source and destination. For this example, we want to load data from Mux to YugabyteDB. You can run the following commands to create a starting point for loading data from Mux to YugabyteDB:

# create a new directory
mkdir mux_pipeline
cd mux_pipeline
# initialize a new pipeline with your source and destination
dlt init mux postgres
# install the required dependencies
pip install -r requirements.txt

The last command will install the required dependencies for your pipeline. The dependencies are listed in the requirements.txt:

dlt[postgres]>=0.3.5

You now have the following folder structure in your project:

mux_pipeline/
├── .dlt/
│ ├── config.toml # configs for your pipeline
│ └── secrets.toml # secrets for your pipeline
├── mux/ # folder with source specific files
│ └── ...
├── mux_pipeline.py # your main pipeline script
├── requirements.txt # dependencies for your pipeline
└── .gitignore # ignore files for git (not required)

2. Configuring your source and destination credentials

The dlt cli will have created a .dlt directory in your project folder. This directory contains a config.toml file and a secrets.toml file that you can use to configure your pipeline. The automatically created version of these files look like this:

generated config.toml

# put your configuration values here

[runtime]
log_level="WARNING" # the system log level of dlt
# use the dlthub_telemetry setting to enable/disable anonymous usage data reporting, see https://dlthub.com/docs/telemetry
dlthub_telemetry = true

generated secrets.toml

# put your secret values and credentials here. do not share this file and do not push it to github

[sources.mux]
mux_api_access_token = "mux_api_access_token" # please set me up!
mux_api_secret_key = "mux_api_secret_key" # please set me up!

[destination.postgres]
dataset_name = "dataset_name" # please set me up!

[destination.postgres.credentials]
database = "database" # please set me up!
password = "password" # please set me up!
username = "username" # please set me up!
host = "host" # please set me up!
port = 5432
connect_timeout = 15

2.1. Adjust the generated code to your usecase

Further help setting up your source and destinations
  • Read more about setting up the Mux source in our docs.
  • Read more about setting up the YugabyteDB destination in our docs.

3. Running your pipeline for the first time

The dlt cli has also created a main pipeline script for you at mux_pipeline.py, as well as a folder mux that contains additional python files for your source. These files are your local copies which you can modify to fit your needs. In some cases you may find that you only need to do small changes to your pipelines or add some configurations, in other cases these files can serve as a working starting point for your code, but will need to be adjusted to do what you need them to do.

The main pipeline script will look something like this:


import dlt
from mux import mux_source


def load_yesterday_video_views() -> None:
pipeline = dlt.pipeline(
pipeline_name="mux", destination='postgres', dataset_name="mux_data"
)
load_info = pipeline.run(mux_source())
print(load_info)


if __name__ == "__main__":
load_yesterday_video_views()

Provided you have set up your credentials, you can run your pipeline like a regular python script with the following command:

python mux_pipeline.py

4. Inspecting your load result

You can now inspect the state of your pipeline with the dlt cli:

dlt pipeline mux info

You can also use streamlit to inspect the contents of your YugabyteDB destination for this:

# install streamlit
pip install streamlit
# run the streamlit app for your pipeline with the dlt cli:
dlt pipeline mux show

5. Next steps to get your pipeline running in production

One of the beauties of dlt is, that we are just a plain Python library, so you can run your pipeline in any environment that supports Python >= 3.8. We have a couple of helpers and guides in our docs to get you there:

The Deploy section will show you how to deploy your pipeline to

  • Deploy with Github Actions: Automate your pipeline deployment using Github Actions.
  • Deploy with Airflow: Use Google Composer for managed Airflow environments to deploy your pipeline. Learn more here.
  • Deploy with Google Cloud Functions: Utilize Google Cloud Functions for serverless deployment of your pipeline. Find the guide here.
  • Explore other deployment options: Check out additional methods for deploying your pipeline here.

The running in production section will teach you about:

  • How to Monitor your pipeline: Learn how to effectively monitor your dlt pipeline to ensure smooth operation and catch issues early. Read more
  • Set up alerts: Set up alerts to get notified about important events and potential issues in your dlt pipeline. Read more
  • Set up tracing: Implement tracing to gain insights into the performance and behavior of your dlt pipeline. Read more

Available Sources and Resources

For this verified source the following sources and resources are available

Source mux_source

"Mux_source" provides data on video content and viewing metrics from the Mux platform.

Resource NameWrite DispositionDescription
assets_resourcemergeFetches metadata about video assets from the Mux API's "assets" endpoint
views_resourceappendFetches data about every video view from yesterday from the Mux API

Additional pipeline guides

This demo works on codespaces. Codespaces is a development environment available for free to anyone with a Github account. You'll be asked to fork the demo repository and from there the README guides you with further steps.
The demo uses the Continue VSCode extension.

Off to codespaces!

DHelp

Ask a question

Welcome to "Codex Central", your next-gen help center, driven by OpenAI's GPT-4 model. It's more than just a forum or a FAQ hub – it's a dynamic knowledge base where coders can find AI-assisted solutions to their pressing problems. With GPT-4's powerful comprehension and predictive abilities, Codex Central provides instantaneous issue resolution, insightful debugging, and personalized guidance. Get your code running smoothly with the unparalleled support at Codex Central - coding help reimagined with AI prowess.