Skip to main content

Loading Klarna Data to Google Cloud Storage using python dlt

Need help deploying these pipelines, or figuring out how to run them in your data stack?

Join our Slack community or book a call with our support engineer Violetta.

This page provides technical documentation on loading data from Klarna to Google Cloud Storage using the open-source Python library dlt. Klarna is a global payment solutions provider offering seamless online payment services for businesses and consumers, including 'buy now, pay later' options, installment plans, and direct payments. By integrating Klarna, businesses can offer flexible payment solutions, improve customer satisfaction, and increase conversion rates. Google Cloud Storage serves as the destination filesystem, allowing you to create data lakes on the Google Cloud Platform and upload data in formats such as JSONL, Parquet, or CSV. This guide will walk you through the steps to efficiently transfer your Klarna data to Google Cloud Storage using dlt. For more information about Klarna, visit here.

dlt Key Features

  • Pipeline Metadata: dlt pipelines leverage metadata to provide governance capabilities. This metadata includes load IDs, which consist of a timestamp and pipeline name. Load IDs enable incremental transformations and data vaulting by tracking data loads and facilitating data lineage and traceability. Read more.
  • Schema Enforcement and Curation: dlt empowers users to enforce and curate schemas, ensuring data consistency and quality. Schemas define the structure of normalized data and guide the processing and loading of data. Read more.
  • Schema Evolution: dlt enables proactive governance by alerting users to schema changes. When modifications occur in the source data’s schema, such as table or column alterations, dlt notifies stakeholders, allowing them to take necessary actions, such as reviewing and validating the changes, updating downstream processes, or performing impact analysis. Read more.
  • Scaling and Fine-Tuning: dlt offers several mechanisms and configuration options to scale up and fine-tune pipelines, including running extraction, normalization, and load in parallel, and writing sources and resources that are run in parallel via thread pools and async execution. Read more.
  • Advanced Topics: dlt is a constantly growing library that supports many features and use cases needed by the community. Join our Slack to find recent releases or discuss what you can build with dlt. Read more.

Getting started with your pipeline locally

OpenAPI Source Generator dlt-init-openapi

This walkthrough makes use of the dlt-init-openapi generator cli tool. You can read more about it here. The code generated by this tool uses the dlt rest_api verified source, docs for this are here.

0. Prerequisites

dlt and dlt-init-openapi requires Python 3.9 or higher. Additionally, you need to have the pip package manager installed, and we recommend using a virtual environment to manage your dependencies. You can learn more about preparing your computer for dlt in our installation reference.

1. Install dlt and dlt-init-openapi

First you need to install the dlt-init-openapi cli tool.

pip install dlt-init-openapi

The dlt-init-openapi cli is a powerful generator which you can use to turn any OpenAPI spec into a dlt source to ingest data from that api. The quality of the generator source is dependent on how well the API is designed and how accurate the OpenAPI spec you are using is. You may need to make tweaks to the generated code, you can learn more about this here.

# generate pipeline
# NOTE: add_limit adds a global limit, you can remove this later
# NOTE: you will need to select which endpoints to render, you
# can just hit Enter and all will be rendered.
dlt-init-openapi klarna --url https://raw.githubusercontent.com/dlt-hub/openapi-specs/main/open_api_specs/Business/klarna.yaml --global-limit 2
cd klarna_pipeline
# install generated requirements
pip install -r requirements.txt

The last command will install the required dependencies for your pipeline. The dependencies are listed in the requirements.txt:

dlt>=0.4.12

You now have the following folder structure in your project:

klarna_pipeline/
├── .dlt/
│ ├── config.toml # configs for your pipeline
│ └── secrets.toml # secrets for your pipeline
├── rest_api/ # The rest api verified source
│ └── ...
├── klarna/
│ └── __init__.py # TODO: possibly tweak this file
├── klarna_pipeline.py # your main pipeline script
├── requirements.txt # dependencies for your pipeline
└── .gitignore # ignore files for git (not required)

1.1. Tweak klarna/__init__.py

This file contains the generated configuration of your rest_api. You can continue with the next steps and leave it as is, but you might want to come back here and make adjustments if you need your rest_api source set up in a different way. The generated file for the klarna source will look like this:

Click to view full file (39 lines)

from typing import List

import dlt
from dlt.extract.source import DltResource
from rest_api import rest_api_source
from rest_api.typing import RESTAPIConfig


@dlt.source(name="klarna_source", max_table_nesting=2)
def klarna_source(
base_url: str = dlt.config.value,
) -> List[DltResource]:

# source configuration
source_config: RESTAPIConfig = {
"client": {
"base_url": base_url,
},
"resources":
[
# Use this API call to get a Klarna Payments session. You can read the Klarna Payments session at any time after it has been created, to get information about it. This will return all data that has been collected during the session. Read more on **[Read an existing payment session](https://docs.klarna.com/klarna-payments/other-actions/check-the-details-of-a-payment-session/)**.
{
"name": "session_read",
"table_name": "session_read",
"endpoint": {
"data_selector": "$",
"path": "/payments/v1/sessions/{session_id}",
"params": {
"session_id": "FILL_ME_IN", # TODO: fill in required path parameter

},
"paginator": "auto",
}
},
]
}

return rest_api_source(source_config)

2. Configuring your source and destination credentials

info

dlt-init-openapi will try to detect which authentication mechanism (if any) is used by the API in question and add a placeholder in your secrets.toml.

  • If you know your API needs authentication, but none was detected, you can learn more about adding authentication to the rest_api here.
  • OAuth detection currently is not supported, but you can supply your own authentication mechanism as outlined here.

The dlt cli will have created a .dlt directory in your project folder. This directory contains a config.toml file and a secrets.toml file that you can use to configure your pipeline. The automatically created version of these files look like this:

generated config.toml


[runtime]
log_level="INFO"

[sources.klarna]
# Base URL for the API
base_url = "https://api.klarna.com"

generated secrets.toml


[sources.klarna]
# secrets for your klarna source
# example_api_key = "example value"

2.1. Adjust the generated code to your usecase

Further help setting up your source and destinations

At this time, the dlt-init-openapi cli tool will always create pipelines that load to a local duckdb instance. Switching to a different destination is trivial, all you need to do is change the destination parameter in klarna_pipeline.py to filesystem and supply the credentials as outlined in the destination doc linked below.

  • Read more about setting up the rest_api source in our docs.
  • Read more about setting up the Google Cloud Storage destination in our docs.

The default filesystem destination is configured to connect to AWS S3. To load to Google Cloud Storage, update the [destination.filesystem.credentials] section in your secrets.toml.

[destination.filesystem.credentials]
client_email="Please set me up!"
private_key="Please set me up!"
project_id="Please set me up!"

By default, the filesystem destination will store your files as JSONL. You can tell your pipeline to choose a different format with the loader_file_format property that you can set directly on the pipeline or via your config.toml. Available values are jsonl, parquet and csv:

[pipeline] # in ./dlt/config.toml
loader_file_format="parquet"

3. Running your pipeline for the first time

The dlt cli has also created a main pipeline script for you at klarna_pipeline.py, as well as a folder klarna that contains additional python files for your source. These files are your local copies which you can modify to fit your needs. In some cases you may find that you only need to do small changes to your pipelines or add some configurations, in other cases these files can serve as a working starting point for your code, but will need to be adjusted to do what you need them to do.

The main pipeline script will look something like this:


import dlt

from klarna import klarna_source


if __name__ == "__main__":
pipeline = dlt.pipeline(
pipeline_name="klarna_pipeline",
destination='duckdb',
dataset_name="klarna_data",
progress="log",
export_schema_path="schemas/export"
)
source = klarna_source()
info = pipeline.run(source)
print(info)

Provided you have set up your credentials, you can run your pipeline like a regular python script with the following command:

python klarna_pipeline.py

4. Inspecting your load result

You can now inspect the state of your pipeline with the dlt cli:

dlt pipeline klarna_pipeline info

You can also use streamlit to inspect the contents of your Google Cloud Storage destination for this:

# install streamlit
pip install streamlit
# run the streamlit app for your pipeline with the dlt cli:
dlt pipeline klarna_pipeline show

5. Next steps to get your pipeline running in production

One of the beauties of dlt is, that we are just a plain Python library, so you can run your pipeline in any environment that supports Python >= 3.8. We have a couple of helpers and guides in our docs to get you there:

The Deploy section will show you how to deploy your pipeline to

  • Deploy with GitHub Actions: Learn how to deploy your dlt pipeline using GitHub Actions, a free CI/CD runner. Read more
  • Deploy with Airflow and Google Composer: Follow this guide to deploy your pipeline with Airflow, a popular workflow orchestration tool, and Google Composer. Read more
  • Deploy with Google Cloud Functions: Discover how to deploy your dlt pipeline using Google Cloud Functions for a serverless deployment approach. Read more
  • Explore other deployment options: Check out additional methods and detailed guides for deploying your dlt pipeline. Read more

The running in production section will teach you about:

  • How to Monitor your pipeline: Learn how to effectively monitor your dlt pipeline in production to ensure smooth operations and quick issue resolution. How to Monitor your pipeline
  • Set up alerts: Set up alerts for your dlt pipeline to stay informed about any critical events or issues that might arise during its execution. Set up alerts
  • Set up tracing: Implement tracing in your dlt pipeline to gain detailed insights and track the execution flow for better debugging and performance optimization. And set up tracing

Available Sources and Resources

For this verified source the following sources and resources are available

Source Klarna

Klarna source for accessing session data and related analytics.

Resource NameWrite DispositionDescription
session_readappendSession data including user interactions and payment sessions

Additional pipeline guides

This demo works on codespaces. Codespaces is a development environment available for free to anyone with a Github account. You'll be asked to fork the demo repository and from there the README guides you with further steps.
The demo uses the Continue VSCode extension.

Off to codespaces!

DHelp

Ask a question

Welcome to "Codex Central", your next-gen help center, driven by OpenAI's GPT-4 model. It's more than just a forum or a FAQ hub – it's a dynamic knowledge base where coders can find AI-assisted solutions to their pressing problems. With GPT-4's powerful comprehension and predictive abilities, Codex Central provides instantaneous issue resolution, insightful debugging, and personalized guidance. Get your code running smoothly with the unparalleled support at Codex Central - coding help reimagined with AI prowess.